0000000000068775

AUTHOR

Davide Pupillo

0009-0008-0683-079x

Enhancing Biocompatibility and Antibacterial Activity of Ti6Al4V by Entrapping Ag and Hydroxyapatite Inside Alginate Filled Pores of TiO 2 Layer Grown by Spark Anodizing

A three-step electrochemical process is developed to grow a coating on Ti6Al4V alloy for biomedical applications aimed to enhance its bioactivity. The coating is composed by a porous titanium oxide filled with Ag, alginic acid, and hydroxyapatite to provide antibacterial properties and, at the same time, osteointegration capability. Anodized and treated with the electrochemical process samples are characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction, and Raman Spectroscopy to have information about morphology and composition soon after the fabrication and after immersion in Hanks' solution. Bioactivity of the samples is also prov…

research product

Highly Active and Stable NiCuMo Electrocatalyst Supported on 304 Stainless Steel Porous Transport Layer for Hydrogen Evolution in Alkaline Water Electrolyzer

Several functionalized porous transport layers with Pt-free electrocatalysts for hydrogen evolution reaction in alkaline conditions, based on Ni, Cu, and Mo, are prepared through electrodeposition onto a 304 stainless steel mesh. Morphological characterization confirms the fabrication of electrodes with high electrochemical surface active area due to the formation of hierarchical nanostructures. Mo presence into the electrocatalysts increases the activity toward the hydrogen evolution reaction. The optimization of electrodeposition process leads to the preparation of highly active NiCuMo electrocatalyst that exhibits near zero onset overpotential and overpotentials of 15 and 113 mV at 10 an…

research product