0000000000068855
AUTHOR
C. Spinella
Micro-Raman characterization of graphene grown on SiC(000-1)
Graphene (Gr) was grown on the C face of 4H-SiC under optimized conditions (high annealing temperatures ranging from 1850 to 1950°C in Ar ambient at 900 mbar) in order to achieve few layers of Gr coverage. Several microscopy techniques, including optical microscopy (OM), ?Raman spectroscopy, atomic force microscopy (AFM) and atomic resolution scanning transmission electron microscopy (STEM) have been used to extensively characterize the lateral uniformity of the as-grown layers at different temperatures. ?Raman analysis provided information on the variation of the number of layers, of the stacking-type, doping and strain.
Electrical and structural characterization of metal-oxide-semiconductor capacitors with silicon rich oxide
Metal-oxide-semiconductor capacitors in which the gate oxide has been replaced with a silicon rich oxide (SRO) film sandwiched between two thin SiO2 layers are presented and investigated by transmission electron microscopy and electrical measurements. The grain size distribution and the amount of crystallized silicon remaining in SRO after annealing have been studied by transmission electron microscopy, whereas the charge trapping and the charge transport through the dots in the SRO layer have been extensively investigated by electrical measurements. Furthermore, a model, which explains the electrical behavior of such SRO capacitors, is presented and discussed. © 2001 American Institute of …
Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition
Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…
Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology
In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…
Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices
Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …
Interfacial disorder of graphene grown at high temperatures on 4H-SiC(000-1)
This paper presents an investigation of the morphological and structural properties of graphene (Gr) grown on SiC(000-1) by thermal treatments at high temperatures (from 1850 to 1950 ºC) in Ar at atmospheric pressure. Atomic force microscopy and micro-Raman spectroscopy showed that the grown Gr films are laterally inhomogeneous in the number of layers, and that regions with different stacking-type (coupled or decoupled Gr films) can coexist in the same sample. Scanning transmission electron microscopy and electron energy loss spectroscopy showed that a nm-thick C-Si-O amorphous layer is present at the interface between Gr and SiC. Basing on these structural results, the mechanisms of Gr gro…
Memory effects in MOS devices based on Si quantum dots
Silicon quantum dots have been deposited on top of a 3-nm tunnel oxide by Low Pressure Chemical Vapour Deposition (LPCVD) and coated with a 7-nm Chemical Vapour Deposited (CVD) oxide. This stack was then incorporated in Metal-Oxide-Semiconductor structure and used as floating gate of a memory cell. The presence of 3 nm of tunnel oxides allows the injection of the charge by direct tunnel (DT) using low voltages for both program and erase operations. The charge stored in the quantum dots is able to produce a well-detectable flat band shift in the capacitors or, equivalently, a threshold voltage shift in the transistors. Furthermore, due to the presence of SiO 2 between the grains, the lateral…