0000000000069579

AUTHOR

Andrea Tramacere

showing 3 related works from this author

Euclid preparation. XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

2021

Pocino, A., et al. (Euclid Collaboration)

luminous red galaxiesCosmological parameterAstrophysicsSurveys01 natural sciencesCosmologytechniques: photometricgalaxiesGalaxies: distances and redshiftdistances and redshiftsSurvey010303 astronomy & astrophysicsWeak gravitational lensingPhysicsRedshift surveylsstastro-ph.COgalaxies: distances and redshiftsconstraintsAstrophysics - Cosmology and Nongalactic Astrophysicsredshift surveyCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmological parametersFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsphotometricSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencesdistances and redshifts [Galaxies]cosmological parametersSpurious relationshipCluster analysisdark energy surveyAstrophysics::Galaxy Astrophysics010308 nuclear & particles physicsphotometric [Techniques]Astronomy and Astrophysicsspace115 Astronomy Space scienceRedshiftGalaxySpace and Planetary ScienceCosmological parameters; Galaxies: distances and redshifts; Surveys; Techniques: photometrictechniquesFocus (optics)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologycosmic shearintrinsic alignments
researchProduct

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

2021

Ilbert, O., et al. (Euclid Collaboration)

statistical [Methods]IMPACTUNIVERSEAstrophysics01 natural sciencesDark energyGalaxies: distances and redshiftdark energyPHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingPhotometric redshiftmedia_commonPhysicsdistances and redshift [Galaxies]Dark energy; Galaxies: distances and redshifts; Methods: statisticalSIMULATIONastro-ph.CO3103 Astronomy and AstrophysicsProbability distributionSpectral energy distributiongalaxies: distances and redshiftsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 Physicsastro-ph.GAmedia_common.quotation_subjectFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics1912 Space and Planetary Science0103 physical sciencesdistances and redshifts [Galaxies]/dk/atira/pure/subjectarea/asjc/1900/1912DISTRIBUTIONSmethods: statistical010308 nuclear & particles physicsAstronomy and AstrophysicsPERFORMANCE115 Astronomy Space scienceAstrophysics - Astrophysics of GalaxiesEVOLUTIONGalaxyUniverseRedshiftSTELLARRESOLUTIONSpace and Planetary Science10231 Institute for Computational ScienceAstrophysics of Galaxies (astro-ph.GA)Dark energy/dk/atira/pure/subjectarea/asjc/3100/3103[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct