0000000000069835

AUTHOR

Moran Baruch

DGA detection using machine learning methods

Yksi yleisimmistä kyberhyökkäysistä on käyttää ryhmä yksityisiä tietokoneita (private computers), joita käytetään esimerkiksi salaisien tietojen levittämiseen. Näitä koneryhmiä kutsutaan botnet. Botnetit pysyvät havaitsemattomana käyttämällä Domain Name Generation (DGA) menetelmää, joka luo ajoittain ja ratkaisee suurina lukumäärinä erillaisia pseudosatunnaisia verkkotunnuksia, kunnes jokin näistä pseudosatunnaisista verkkotunnuksista DNS palvelin hyväksyy. Tämän tutkielman tarkoitus on kehitellä ei- ohjattuja koneoppimismenetelmiä ja vertailla näiden tarkkuutta ohjattuihin koneoppimismenetelmiin DGA hyökkäyksien havaitsemiseen. Lisäksi, tutkielmassa esitellään Random One Class Support Vect…

research product

Domain Generation Algorithm Detection Using Machine Learning Methods

A botnet is a network of private computers infected with malicious software and controlled as a group without the knowledge of the owners. Botnets are used by cybercriminals for various malicious activities, such as stealing sensitive data, sending spam, launching Distributed Denial of Service (DDoS) attacks, etc. A Command and Control (C&C) server sends commands to the compromised hosts to execute those malicious activities. In order to avoid detection, recent botnets such as Conficker, Zeus, and Cryptolocker apply a technique called Domain-Fluxing or Domain Name Generation Algorithms (DGA), in which the infected bot periodically generates and tries to resolve a large number of pseudorando…

research product