0000000000071776

AUTHOR

D. Mockler

showing 28 related works from this author

Measurement of the cosmic-ray energy spectrum above 2.5×1018  eV using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…

cosmic ray; astroparticle detectors; cosmic ray spectraEnergy SpectrumSettore FIS/01 - Fisica SperimentaleUltra-high energy cosmic rays energy spectrum Cherenkov detectorsUHE Cosmic Rays
researchProduct

Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

2017

We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…

moment: dipoleAstronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray experiments; ultra high energy cosmic rays; Astronomy and AstrophysicsCosmic rayanisotropyultra high energy cosmic raysSURFACE DETECTOR01 natural sciencesLARGE-SCALE DISTRIBUTIONwaveletSEARCH0103 physical sciencesARRIVAL DIRECTIONSHigh Energy Physicscosmic radiation: UHEAnisotropy010303 astronomy & astrophysicsZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectral densityAstronomy and AstrophysicsEEVASTROFÍSICAComputational physicsAugerCosmic ray experiments; ultra high energy cosmic raysobservatoryDipolecosmic ray experiments ultra high energy cosmic raysRESOLUTIONMoment (physics)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGpower spectrum: angular dependenceARRAYcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

2020

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

010504 meteorology & atmospheric sciencesPoint sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Tau neutrino0103 physical sciencesTRACK RECONSTRUCTIONSource spectrum010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEIsotropyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyAir showerPhysics and Astronomy13. Climate actionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)
researchProduct

Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory

2020

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…

High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysics010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesIceCube Neutrino ObservatoryNeutrino astronomySpace and Planetary ScienceObservatory0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)High energy astrophysics010303 astronomy & astrophysicsastro-ph.IM0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

2020

Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103

background [atmosphere]Astrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics53001 natural sciencesIceCubeparticle source [neutrino]TRACK RECONSTRUCTION0103 physical sciencesddc:530atmosphere [muon]010306 general physicsAstrophysics::Galaxy Astrophysicsmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonAstrophysics::Instrumentation and Methods for AstrophysicsNorthern HemisphereAstronomyGalaxymessengerPhysics and AstronomySkycorrelationtime dependenceupgradegalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenastatistical
researchProduct

IceCube-Gen2: The Window to the Extreme Universe

2020

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HENuclear and High Energy PhysicsActive galactic nucleus010308 nuclear & particles physicsHigh-energy astronomyGravitational wavemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic ray01 natural sciencesUniverseNeutron star0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsmedia_common
researchProduct

EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

2020

Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801

Sterile neutrinoPhysics::Instrumentation and DetectorsGeneral Physics and Astronomysterile [neutrino]01 natural sciencesCosmologyIceCubeHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Astronomi astrofysik och kosmologiSubatomic PhysicsTOOLAstronomy Astrophysics and Cosmologyatmosphere [muon]Muon neutrinoPhysicsPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicshep-phneutrino: sterilemass difference [neutrino]ddc:muon: atmosphereobservatoryHigh Energy Physics - PhenomenologyPhysique des particules élémentairessignatureParticle physicsdata analysis methodScale (ratio)Astrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciences530IceCube Neutrino Observatorystatistical analysis0103 physical sciencesOSCILLATIONSddc:530010306 general physicshep-exICEHigh Energy Physics::Phenomenologyneutrino: mixing angleCONVERSIONPhysics and AstronomyCOSMOLOGYHigh Energy Physics::Experimentneutrino: oscillationBAYESIAN-INFERENCEmixing angle [neutrino]experimental results
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

2020

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectmodel [emission]FOS: Physical sciencesCosmic rayAstrophysics01 natural scienceslaw.inventionIceCube Neutrino ObservatoryIceCubeblazarlawemission [gamma ray]0103 physical sciencesCosmic ray sources; High-energy astrophysics; Particle astrophysicsenergy: high [neutrino]Blazar010303 astronomy & astrophysics0105 earth and related environmental sciencesmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstroparticle physicsPhysicsbackgroundAstronomy and AstrophysicsCosmic ray sourcesUniverseHigh-energy astrophysicsmessengerobservatorySpace and Planetary Scienceddc:520time dependenceacceleration [cosmic radiation]NeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle astrophysicsFlare
researchProduct

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

2021

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.

Particle physicsPhysics::Instrumentation and DetectorsComputer scienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyCHERENKOV LIGHT YIELDWeighting01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasStandard ModelHigh Energy Physics - Experiment (hep-ex)Neutrino interactionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsCherenkov radiationEvent generatorEvent generator; Neutrino generator; Neutrino interaction; Neutrino simulation; WeightingGenerator (computer programming)hep-exEvent (computing)ICEHigh Energy Physics::PhenomenologyDetectorhep-phComputational Physics (physics.comp-ph)Quantitative Biology::GenomicsHigh Energy Physics - Phenomenologyphysics.comp-phHardware and ArchitectureHigh Energy Physics::ExperimentNeutrino simulationNeutrino generatorEvent generatorNeutrinoPhysics - Computational PhysicsLeptonComputer Physics Communications
researchProduct

Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory

2019

Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν -2 spectrum in the energy range 1.0 × 1017 eV -2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10-9 GeV cm-2 s-1 sr-1, placing str…

cosmological neutrinosAstronomyFluxAstrophysics01 natural sciences7. Clean energycosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic rayssurface [detector]Ultra-high-energy cosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)cosmological neutrinoSettore FIS/01 - Fisica SperimentaleDETETORESneutrino: UHEUHE [neutrino]Augerobservatorytrajectoryneutrino: flavorProduction (computer science)NeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencescosmic ray experimentCosmic rayultra high energy cosmic raysneutrino: productionneutrino astronomyproduction [neutrino]TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530model [neutrino]High Energy Physicscosmic radiation: UHEZenithAstrophysiqueneutrino: modelPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsdetector: surfaceHigh Energy Physics::Phenomenologyflavor [neutrino]Astronomy and AstrophysicsAstronomiefluxExperimental High Energy PhysicsatmosphereHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory

2018

We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $E\geq 8$ EeV, the most significant signal is a dipolar modulation in right ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index $\beta=0.79\pm 0.19$. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Addi…

Astronomymagnetic fieldAstrophysicsAstrophysics01 natural sciencesAmplitudeastroparticle physics; cosmic raysAnisotropy010303 astronomy & astrophysicscosmic rayastroparticle physics cosmic raysRight ascensionHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HECOSMIC cancer databaseORIGINOBSERVATÓRIOSPhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsastroparticle physicAugerastroparticle physics; cosmic rays; Astronomy and Astrophysics; Space and Planetary ScienceobservatorymodulationAmplitudeastroparticle physicsCosmic cancer databaseAstrophysics - High Energy Astrophysical Phenomenalarge scale anysotropysplittingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)cosmic radiation: anisotropycosmic rays0103 physical sciencesHigh Energy Physicscosmic radiation: UHEPierre auger observatoryPierre Auger Observatoryextragalactic origin010308 nuclear & particles physicsFísicaAstronomy and AstrophysicsContext (language use)Astronomy and AstrophysicCosmic rayDipoleSpace and Planetary ScienceExperimental High Energy PhysicsAnisotropyDipoleObservatoryAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Right ascensionlarge scale anysotropy extragalactic origindipole
researchProduct

Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory

2019

With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…

cosmological neutrinosAstronomypoleFluxAstrophysics01 natural sciencesneutrino: fluxcosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic raysmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSastro-ph.HEcosmological neutrinoSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSneutrino: UHEAugerobservatoryNEUTRINOSNeutrinoAstrophysics - High Energy Astrophysical Phenomenaairmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesultra high energy cosmic raysDeclinationneutrino astronomyCelestial pole0103 physical sciencesflux: upper limitHigh Energy PhysicsDETECTORZenithAstrophysiquePierre Auger Observatoryflavorshowers: atmosphere010308 nuclear & particles physicsdetector: surfaceNorthern HemisphereAstronomy and AstrophysicsAstronomiesensitivitySkyExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

2018

With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or sc…

Physics::Instrumentation and DetectorsAstronomyengineering01 natural sciencesultra high energy cosmic rayAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic ray experiments; cosmic rays detectors; ultra high energy cosmic rays; Astronomy and Astrophysics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cosmic ray experiments cosmic rays detectors ultra high energy cosmic rays Astronomy and Astrophysics.Absorption (electromagnetic radiation)Physicsradio waveSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETORESCOSMIC-RAYSAugerobservatoryAmplitudecosmic rays detectorsAstrophysics - Instrumentation and Methods for Astrophysicsnumerical calculations: Monte CarloairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentultra high energy cosmic rayscascade: electromagneticOptics0103 physical sciencesHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic rays detector010306 general physicscosmic ray experiments cosmic rays detectors ultra high energy cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithAstrophysiquePierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryScatteringhep-exdetector: surfacescatteringAstronomy and AstrophysicsAstronomieAir showerExperimental High Energy PhysicsARRAYHigh Energy Physics::Experimentcosmic ray experimentscosmic ray experiments; cosmic rays detectors; ultra high energy cosmic raysEMISSIONbusinessabsorptionastro-ph.IM
researchProduct

Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

2020

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.

Physics::Instrumentation and DetectorsAstronomyprimary [cosmic radiation]01 natural sciences030218 nuclear medicine & medical imagingAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinesurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Data Processing; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of High Energy Physics DetectorsInstrumentationMathematical PhysicsData Processing; Large detector systems for particle and astroparticle physics; Largedetector-systems performance; Performance of High Energy Physics DetectorsLarge detector-systems performanceHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEInstrumentation et méthodes en physiqueData ProcessingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugercascadeobservatoryCascadeLargedetector-systems performanceddc:620Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airAstrophysics::High Energy Astrophysical PhenomenawaterFOS: Physical sciencesCosmic rayAtmosphere03 medical and health sciencesOptics0103 physical sciencesHigh Energy Physics14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithEngineering & allied operationsPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryhep-exdetector: surfaceLarge detector systems for particle and astroparticle physicsAutres mathématiquescosmic radiation: primaryCherenkov counterExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentPerformance of High Energy Physics Detectorsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory

2020

We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsAstrophysicsanisotropy [cosmic radiation]Amplitude01 natural sciencessurface [detector]010303 astronomy & astrophysicsRight ascensionastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSGalactic CenterAstrophysics::Instrumentation and Methods for AstrophysicsCosmic RaysAugerobservatoryAmplitudePhysics::Space PhysicsAstrophysics - High Energy Astrophysical PhenomenaExtragalactic cosmic rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raycosmic radiation: anisotropyExtragalactic cosmic rayGalactic center0103 physical sciencesHigh Energy PhysicsPierre auger observatory0105 earth and related environmental sciencesPierre Auger Observatorydetector: surfaceFísicaAstronomy and AstrophysicsCosmic rayefficiency [trigger]GalaxyDipole* Automatic Keywords *Space and Planetary ScienceExperimental High Energy Physicstrigger: efficiencyddc:520galaxyDipoleObservatoryEnergy (signal processing)anisotropiesRight ascension[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)dipoleThe Astrophysical Journal
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

2017

A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…

ultra high energy cosmic rays cosmic ray experimentsPhoton[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyHadronFluxultra high energy cosmic rays; cosmic ray experiments7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)energy: thresholdCosmic ray experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsphoton: productionconstraint: energyCOSMIC-RAYSAugerobservatoryContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenalongitudinalAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayultra high energy cosmic raysdark matterUltra high energy cosmic rays Cosmic ray experiments Astronomy and Astrophysics.Nuclear physics[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesultra high energy cosmic rays; cosmic ray experiments; Astronomy and Astrophysicscosmic radiation: UHEHigh Energy PhysicsCiencias ExactasPierre Auger ObservatorySPECTRUMhybridbackgrounddetector: surface010308 nuclear & particles physicsFísicaUltra high energy cosmic raysAstronomy and AstrophysicsASTROFÍSICAULTRA-HIGH ENERGYfluxExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experimentshadron[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

2021

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

FOS: Computer and information sciencesComputer Science - Machine LearningAstrophysics::High Energy Astrophysical Phenomenacs.LGData analysisFOS: Physical sciencesFitting methods01 natural sciencesConvolutional neural networkCalibration; Cluster finding; Data analysis; Fitting methods; Neutrino detectors; Pattern recognitionHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryMachine Learning (cs.LG)High Energy Physics - Experiment (hep-ex)Pattern recognition0103 physical sciencesNeutrino detectors010303 astronomy & astrophysicsInstrumentationMathematical Physics010308 nuclear & particles physicsbusiness.industryhep-exDeep learningCluster findingDetectorNeutrino detectorComputer engineeringOrders of magnitude (time)13. Climate actionCascadeCalibrationPattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data

2020

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyElectronpower spectrumflux [electron]energy [particle]01 natural sciencesIceCubeNuclear physics5/3Tau neutrinomuon0103 physical scienceslow [energy]Muon neutrinoddc:530010303 astronomy & astrophysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyflavor [neutrino]RAYSflux [neutrino]accelerationshowersoscillationPhysics and Astronomy13. Climate actionEnergy cascadePhysique des particules élémentairesastro-ph.COhigh [energy]cascade [energy]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory

2019

The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and th…

Primary energyAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesNuclear physicscosmic rays0103 physical sciencesExperiments in gravityddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGénéralitésDETETORESMODEL13. Climate actioncosmic rays detectors ultra high energy cosmic raysExperimental High Energy Physicscosmic rays detectorsNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyEnergy (signal processing)Physical Review D
researchProduct

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

2020

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

Astrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatoryneutrino astronomyneutrino experiments0103 physical sciencessiteAstrophysics::Galaxy Astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)densityneutrino astronomy; neutrino detectors; neutrino experiments010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsflux [neutrino]redshiftRedshift surveyGalaxyRedshiftobservatoryNeutrino detectorPhysics and Astronomymultiplet13. Climate actioncorrelationPhysique des particules élémentairesIntergalactic travelHigh Energy Physics::ExperimentgalaxyNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomenaneutrino detectors
researchProduct

An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray …

2018

A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS …

Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Ciencias Físicascosmic radiation: densitygalaxies: starburstAstrophysics01 natural sciences//purl.org/becyt/ford/1 [https]methods: data analysis Supporting material: FITS fileUltra-high-energy cosmic raydata analysis [Methods]Anisotropycosmic radiation: model010303 astronomy & astrophysicscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsastroparticle physicastroparticle physics; cosmic rays; galaxies: active; galaxies: starburst; methods: data analysis Supporting material: FITS files; Astronomy and Astrophysics; Space and Planetary ScienceAugerobservatorygamma ray: emissiondata analysis Supporting material: FITS file [methods]astroparticle physicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusactive [Galaxies]Astrophysics::High Energy Astrophysical Phenomenagalaxies: activeData analysisFOS: Physical sciencesStarburstCosmic rayanisotropyAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias FísicasGLASTcosmic raysastroparticle physics; cosmic rays; galaxies: active; galaxies: starburst; methods: data analysis Supporting material: FITS files0103 physical sciencesHigh Energy Physicscosmic radiation: UHEAGNCosmic raysAstrophysics::Galaxy AstrophysicsZenithmethods: data analysis Supporting material: FITS filesPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsIsotropyFísicaAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Astronomy and Astrophysicmethods: data analysisGalaxyfluxstarburst [Galaxies]Space and Planetary ScienceExperimental High Energy PhysicsActive galaxiesgalaxyAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statistical
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct

Direct measurement of the muonic content of extensive air showers between 2× 1017 and 2×1018 eV at the Pierre Auger Observatory

2020

The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2 × 10 17 and 2 × 10 18 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector …

Muon detector ultra-high energy cosmic raysmuonsUHE Cosmic Rays
researchProduct

Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

2020

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomy01 natural sciences030218 nuclear medicine & medical imaginglaw.invention0302 clinical medicinelawObservatoryatmosphere [muon]Instrumentationphysics.ins-detMathematical PhysicsLarge detector-systems performancePhysicsInstrumentation et méthodes en physiquePerformance of high energy physics detectorsData reduction methods; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of high energy physics detectorsDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsresistive plate chamberInstrumentation and Detectors (physics.ins-det)trajectory [muon]Augerobservatorymuon: atmosphereAstrophysics - Instrumentation and Methods for AstrophysicsData reduction methodsatmosphere [showers]Cherenkov detectorairCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raymuon: trajectoryNuclear physics03 medical and health sciencesHodoscopeData reduction method0103 physical sciencesCalibrationHigh Energy Physicsddc:610cosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]hodoscopeFísicaAutres mathématiquesstabilitycalibrationData reduction methods Large detector systems for particle and astroparticle physics Large detector-systems performance Performance of High Energy Physics DetectorsExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentRAIOS CÓSMICOSastro-ph.IM
researchProduct

Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

2019

The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E>10 17.8 eV .A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and …

p: showersphoton: Cherenkovinteraction: modelAstronomyHadronpiastro-ph.HE; astro-ph.HE01 natural sciencesnitrogenironParametrization (atmospheric modeling)Monte Carlomedia_commonPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Range (particle radiation)photomultiplierSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETOREScosmic rays detectors; ultra high energy cosmic rays; Astronomy and AstrophysicsAugerobservatorycosmic rays detectorscosmic rays detectors; ultra high energy cosmic raysgeometricalAstrophysics - High Energy Astrophysical PhenomenaasymmetrylongitudinalCherenkov counter: waterairmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayheliumultra high energy cosmic raysnucleus: atmosphereAsymmetry0103 physical sciencesHigh Energy Physicscosmic radiation: UHEcosmic rays detectorFLUORESCENCEAstrophysiquePierre Auger Observatoryelectron positronshowers: atmosphere010308 nuclear & particles physicsbackgrounddetector: surfaceshowers: spatial distributionparametrizationAstronomy and AstrophysicsAstronomieComputational physics13. Climate actiongamma rayExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)Journal of Cosmology and Astroparticle Physics
researchProduct