0000000000073519

AUTHOR

E. Ventina

The effect of chemical treatment of stainless steel wire surfaces onZymomonas mobilis cell attachment and product synthesis

The attachment, growth and product synthesis of non-flocculating Zymomonas mobilis cells, fixed in stainless steel wire spheres (WS), were investigated. The carrier surface was activated by treatment with titanium (IV) chloride (TiCl 4 ) and γ-aminopropyltriethoxysilane (AS) in an attempt to raise the efficiency in the immobilization of the cells. System productivity for ethanol and levan production, using cells immobilized on a modified stainless steel surface in the batch fermentation of a sucrose medium, rose as a result of increased biomass compared to the productivity of cells fixed on untreated (control) metal surfaces. Stabilized ethanol synthesis was demonstrated in the course of fo…

research product

Levan-ethanol biosynthesis using Zymomonas mobilis cells immobilized by attachment and entrapment

Fermentation of sucrose by Zymomonas mobilis cells attached to stainless steel wire spheres (WS) and to Al2O3 granules was compared with sucrose fermentation by cells entrapped in Ca-alginate. Similar amounts of cell biomass were applied at the beginning of the immobilized fermentation systems. The immobilization of Z. mobilis cells to the carrier surface was checked by scanning electron microscopy (SEM). Most cells were present in holes and pores of Al2O3 surfaces following colonization. Observation of the carrier after repeated fermentation cycles showed that a surface of Al2O3 granules was partly covered by levan. Alginate beads were extended in volume and partly disrupted. Changing the …

research product

Attachment of yeast to modified stainless steel wire spheres, growth of cells and ethanol production

Abstract The immobilization of yeast Saccharomyces cerevisiae, their growth and ethanol production were investigated using untreated and modified stainless steel wire spheres (WS) as carriers. The carrier surface was modified by oxidation, by treatment with titanium (IV) chloride (TiCl4) or by γ-aminopropyltrietoxysilane (AS) in an attempt to raise the efficiency of the immobilization of the yeast cells. The influence of the cell fixation method on culture growth and ethanol synthesis was investigated. The immobilization of cells to carrier surface was checked by scanning electron microscopy (SEM). More closely attachment of yeast cells was seen on the aminated wire surface. It was establis…

research product

Levan production byZymomonas mobilis cells. Attached to plaited spheres

In this work, an immobilization method for polymer-levan production by a non-flocculating Z mobilis culture was developed. The extent of cell attachment to the stainless steel wire surface, culture growth and product synthesis were described. It was established that during short-term passive immobilization of non-flocculating Z mobilis cells on a stainless steel wire surface, sufficient amounts of biomass for proper levan and ethanol fermentation could not be obtained. Adherence of cells was improved by pressing the paste-like biomass within stainless steel spheres knitted from wire with subsequent dehydration. Biomass fixed in metal spheres was used for repeated batch fermentation of levan…

research product

Stabilization of immobilized cell systems using a modified metal surface, fructose polymer levan and a high cell concentration

research product