Asymmetric [N–I–N]+halonium complexes in solution?
Assessment of the solution equilibria of [bis(pyridine)iodine(I)]+ complexes by ESI-MS and NMR reveals the preference of iodine(I) to form complexes with a more basic pyridine. Mixtures of symmetric [bis(pyridine)iodine(I)]+ complexes undergo statistical ligand exchange, with a predominant entropic driving force favoring asymmetric systems. The influence of ligand basicity, concentration, temperature, and ligand composition is evaluated. Our findings are expected to facilitate the investigations, and the supramolecular and synthetic applications of halonium ions’ halogen bonds. peerReviewed
Substituent Effects on the [N-I-N](+) Halogen Bond
We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyri din e) io dine](+) and [1,2-bis ( (pyridin e-2-71 ethynyl)b e nze n e)io dine](+) BF4- complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by N-15 NMR and by computation of the natural atomic population and the pi electron population of the nitrogen atoms. Formation of the [N-…
Polyoxygenated Cyclohexenes and Other Constituents of Cleistochlamys kirkii Leaves.
Thirteen new metabolites, including the polyoxygenated cyclohexene derivatives cleistodiendiol (1), cleistodienol B (3), cleistenechlorohydrins A (4) and B (5), cleistenediols A-F (6-11), cleistenonal (12), and the butenolide cleistanolate (13), 2,5-dihydroxybenzyl benzoate (cleistophenolide, 14), and eight known compounds (2, 15-21) were isolated from a MeOH extract of the leaves of Cleistochlamys kirkii. The purified metabolites were identified by NMR spectroscopic and mass spectrometric analyses, whereas the absolute configurations of compounds 1, 17, and 19 were established by single-crystal X-ray diffraction. The configuration of the exocyclic double bond of compound 2 was revised base…
Crystal Structures and Cytotoxicity of ent-Kaurane-Type Diterpenoids from Two Aspilia Species
A phytochemical investigation of the roots of Aspilia pluriseta led to the isolation of ent-kaurane-type diterpenoids and additional phytochemicals (1⁻23). The structures of the isolated compounds were elucidated based on Nuclear Magnetic Resonance (NMR) spectroscopic and mass spectrometric analyses. The absolute configurations of seven of the ent-kaurane-type diterpenoids (3⁻6, 6b, 7 and 8) were determined by single crystal X-ray diffraction studies. Eleven of the compounds were also isolated from the roots and the aerial parts of Aspilia mossambicensis. The literature NMR assignments for compounds 1 and 5 were revised. In a cytotoxicity assay, 12α-methoxy-ent-kaur-9(11),1…
N-Cinnamoyltetraketide Derivatives from the Leaves of Toussaintia orientalis
Seven N-cinnamoyltetraketides (1−7), including the new Ztoussaintine E (2), toussaintine F (6), and toussaintine G (7), were isolated from the methanol extract of the leaves of Toussaintia orientalis using column chromatography and HPLC. The configurations of E-toussaintine E (1) and toussaintines A (3) and D (5) are revised based on single-crystal X-ray diffraction data from racemic crystals. Both the crude methanol extract and the isolated constituents exhibit antimycobacterial activities (MIC 83.3−107.7 μM) against the H37Rv strain of Mycobacterium tuberculosis. Compounds 1, 3, 4, and 5 are cytotoxic (ED50 15.3−105.7 μM) against the MDA-MB-231 triple negative aggressive breast cancer cel…
A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii
Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (2&ndash
Naphthalene Derivatives from the Roots of Pentas parvifolia and Pentas bussei
The phytochemical investigation of the CH2Cl2/MeOH (1:1) extract of the roots of Pentas parvifolia led to the isolation of three new naphthalenes, parvinaphthols A (1), B (2), and C (3), two known anthraquinones, and five known naphthalene derivatives. Similar investigation of the roots of Pentas bussei afforded a new polycyclic naphthalene, busseihydroquinone E (4), a new 2,2'-binaphthralenyl-1,1'-dione, busseihydroquinone F (5), and five known naphthalenes. All purified metabolites were characterized by NMR and MS data analyses, whereas the absolute configurations of 3 and 4 were determined by single-crystal X-ray diffraction studies. The E-geometry of compound 5 was supported by DFT-base…
Secoiridoids and Iridoids from Morinda asteroscepa
The new 2,3-secoiridoids morisecoiridoic acids A (1) and B (2), the new iridoid 8-acetoxyepishanzilactone (3), and four additional known iridoids (4–7) were isolated from the leaf and stem bark methanol extracts of Morinda asteroscepa using chromatographic methods. The structure of shanzilactone (4) was revised. The purified metabolites were identified using NMR spectroscopic and mass spectrometric techniques, with the absolute configuration of 1 having been established by single-crystal X-ray diffraction analysis. The crude leaf extract (10 μg/mL) and compounds 1–3 and 5 (10 μM) showed mild antiplasmodial activities against the chloroquine-sensitive malaria parasite Plasmodium falciparum (…
Prenylated Flavonoids from the Roots of Tephrosia rhodesica
Five new compounds—rhodimer (1), rhodiflavan A (2), rhodiflavan B (3), rhodiflavan C (4), and rhodacarpin (5)—along with 16 known secondary metabolites, were isolated from the CH2Cl2–CH3OH (1:1) extract of the roots of Tephrosia rhodesica. They were identified by NMR spectroscopic, mass spectrometric, X-ray crystallographic, and ECD spectroscopic analyses. The crude extract and the isolated compounds 2–5, 9, 15, and 21 showed activity (100% at 10 μg and IC50 = 5–15 μM) against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. peerReviewed
Rotenoids, Flavonoids, and Chalcones from the Root Bark of Millettia usaramensis.
Five new compounds, 4-O-geranylisoliquiritigenin (1), 12-dihydrousararotenoid B (2), 12-dihydrousararotenoid C (3), 4'-O-geranyl-7-hydroxyflavanone (4), and 4'-O-geranyl-7-hydroxydihydroflavanol (5), along with 12 known natural products (6-17) were isolated from the CH2Cl2/MeOH (1:1) extract of the root bark of Millettia usaramensis ssp. usaramensis by chromatographic separation. The purified metabolites were identified by NMR spectroscopic and mass spectrometric analyses, whereas their absolute configurations were established on the basis of chiroptical data and in some cases also by X-ray crystallography. The crude extract was moderately active (IC50 = 11.63 μg/mL) against the ER-negative…
Flavonoids from Erythrina schliebenii
Prenylated and O-methylflavonoids including one new pterocarpan (1), three new isoflavones (2–4), and nineteen known natural products (5–23) were isolated and identified from the root, stem bark, and leaf extracts of Erythrina schliebenii. The crude extracts and their constituents were evaluated for antitubercular activity against Mycobacterium tuberculosis (H37Rv strain), showing MICs of 32–64 μg mL–1 and 36.9–101.8 μM, respectively. Evaluation of their toxicity against the aggressive human breast cancer cell line MDA-MB-231 indicated EC50 values of 13.0–290.6 μM (pure compounds) and 38.3 to >100 μg mL–1 (crude extracts).
Carbon’s Three-Center-Four-Electron Tetrel Bond, Treated Experimentally
Tetrel bonding is the noncovalent interaction of group IV elements with electron donors. It is a weak, directional interaction that resembles hydrogen and halogen bonding yet remains barely explored. Herein, we present an experimental investigation of the carbon-centered, three-center, four-electron tetrel bond, [N−C− N]+ , formed by capturing a carbenium ion with a bidentate Lewis base. NMRspectroscopic, titration-calorimetric, and reaction-kinetic evidence for the existence and structure of this species is reported. The studied interaction is by far the strongest tetrel bond reported so far and is discussed in comparison with the analogous halogen bond. The necessity of the involvement of…
Counterion influence on the N–I–N halogen bond
A detailed investigation of the influence of counterions on the [N–I–N]+ halogen bond in solution, in the solid state and in silico is presented. Translational diffusion coefficients indicate close attachment of counterions to the cationic, three-center halogen bond in dichloromethane solution. Isotopic perturbation of equilibrium NMR studies performed on isotopologue mixtures of regioselectively deuterated and nondeuterated analogues of the model system showed that the counterion is incapable of altering the symmetry of the [N–I–N]+ halogen bond. This symmetry remains even in the presence of an unfavorable geometric restraint. A high preference for the symmetric geometry was found also in …
Counterion influence on the N–I–N halogen bond† †Electronic supplementary information (ESI) available: Experimental details of synthesis, compound characterisation, IPE NMR measurements, computational and crystallographic procedures, and crystal data for 1-Ag/I to 7-Ag/I, and 12-Ag. CCDC 1045981–1045995. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01053e Click here for additional data file. Click here for additional data file.
Counterions influence three-center halogen bonds differently than coordination bonds of transition metals.
CCDC 1045987: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045995: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045983: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1581474: Experimental Crystal Structure Determination
Related Article: Alavi Karim, Nils Schulz, Hanna Andersson, Bijan Nekoueishahraki, Anna-Carin C. Carlsson, Daniel Sarabi, Arto Valkonen, Kari Rissanen, Jürgen Gräfenstein, Sandro Keller, Máté Erdélyi|2018|J.Am.Chem.Soc.|140|17571|doi:10.1021/jacs.8b09367
CCDC 1409159: Experimental Crystal Structure Determination
Related Article: Tsegaye Deyou, Ivan Gumula, Fangfang Pang, Amra Gruhonjic, Michael Mumo, John Holleran, Sandra Duffy, Paul A. Fitzpatrick, Matthias Heydenreich, Göran Landberg, Solomon Derese, Vicky Avery, Kari Rissanen, Máté Erdélyi, Abiy Yenesew|2015|J.Nat.Prod.|78|2932|doi:10.1021/acs.jnatprod.5b00581
CCDC 1497772: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 1045988: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1452897: Experimental Crystal Structure Determination
Related Article: Anna-Carin C. Carlsson, Krenare Mehmeti, Martin Uhrbom, Alavi Karim, Michele Bedin, Rakesh Puttreddy, Roland Kleinmaier, Alexei A. Neverov, Bijan Nekoueishahraki, Jürgen Gräfenstein, Kari Rissanen, and Máté Erdélyi|2016|J.Am.Chem.Soc.|138|9853|doi:10.1021/jacs.6b03842
CCDC 1868319: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1045990: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1061815: Experimental Crystal Structure Determination
Related Article: Tsegaye Deyou, Ivan Gumula, Fangfang Pang, Amra Gruhonjic, Michael Mumo, John Holleran, Sandra Duffy, Paul A. Fitzpatrick, Matthias Heydenreich, Göran Landberg, Solomon Derese, Vicky Avery, Kari Rissanen, Máté Erdélyi, Abiy Yenesew|2015|J.Nat.Prod.|78|2932|doi:10.1021/acs.jnatprod.5b00581
CCDC 1868324: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1061111: Experimental Crystal Structure Determination
Related Article: Tsegaye Deyou, Marco Makungu, Matthias Heydenreich, Fangfang Pan, Amra Gruhonjic, Paul A. Fitzpatrick, Andreas Koch, Solomon Derese, Jerry Pelletier, Kari Rissanen, Abiy Yenesew, and Máté Erdélyi|2017|J.Nat.Prod.|80|2060|doi:10.1021/acs.jnatprod.7b00255
CCDC 1868322: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1045984: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045981: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1963302: Experimental Crystal Structure Determination
Related Article: Linda Zandi, Marco Makungu, Joan J. E. Munissi, Sandra Duffy, Rakesh Puttreddy, Daniel von der Heiden, Kari Rissanen, Vicky M. Avery, Stephen S. Nyandoro, Máté Erdélyi|2020|J.Nat.Prod.|83|2641|doi:10.1021/acs.jnatprod.0c00447
CCDC 1937081: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Gasper Maeda, Joan J.E. Munissi, Amra Gruhonjic, Paul A. Fitzpatrick, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Fangfang Pan, Rakesh Puttreddy, Vicky M. Avery, Máté Erdélyi|2019|Molecules|24|2746|doi:10.3390/molecules24152746
CCDC 1452354: Experimental Crystal Structure Determination
Related Article: Negera Abdissa, Fangfang Pan, Amra Gruhonjic, Jürgen Gräfenstein, Paul A. Fitzpatrick, Göran Landberg, Kari Rissanen, Abiy Yenesew, Máté Erdélyi|2016|J.Nat.Prod.|79|2181|doi:10.1021/acs.jnatprod.6b00178
CCDC 1868321: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1498874: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1045982: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045992: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1497770: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 1045991: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1452898: Experimental Crystal Structure Determination
Related Article: Anna-Carin C. Carlsson, Krenare Mehmeti, Martin Uhrbom, Alavi Karim, Michele Bedin, Rakesh Puttreddy, Roland Kleinmaier, Alexei A. Neverov, Bijan Nekoueishahraki, Jürgen Gräfenstein, Kari Rissanen, and Máté Erdélyi|2016|J.Am.Chem.Soc.|138|9853|doi:10.1021/jacs.6b03842
CCDC 1498877: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1868320: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1045989: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1498873: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1498875: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1045994: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1498876: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1409160: Experimental Crystal Structure Determination
Related Article: Tsegaye Deyou, Ivan Gumula, Fangfang Pang, Amra Gruhonjic, Michael Mumo, John Holleran, Sandra Duffy, Paul A. Fitzpatrick, Matthias Heydenreich, Göran Landberg, Solomon Derese, Vicky Avery, Kari Rissanen, Máté Erdélyi, Abiy Yenesew|2015|J.Nat.Prod.|78|2932|doi:10.1021/acs.jnatprod.5b00581
CCDC 1452353: Experimental Crystal Structure Determination
Related Article: Negera Abdissa, Fangfang Pan, Amra Gruhonjic, Jürgen Gräfenstein, Paul A. Fitzpatrick, Göran Landberg, Kari Rissanen, Abiy Yenesew, Máté Erdélyi|2016|J.Nat.Prod.|79|2181|doi:10.1021/acs.jnatprod.6b00178
CCDC 1045985: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1868318: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1498878: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Msim Kombo, Clarence A. Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|377|doi:10.1021/acs.jnatprod.6b00839
CCDC 1987379: Experimental Crystal Structure Determination
Related Article: Yoseph Atilaw, Lois Muiva-Mutisya, Jonathan Bogaerts, Sandra Duffy, Arto Valkonen, Matthias Heydenreich, Vicky M. Avery, Kari Rissanen, Máté Erdélyi, Abiy Yenesew|2020|J.Nat.Prod.|83|2390|doi:10.1021/acs.jnatprod.0c00245
CCDC 1497771: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 1868323: Experimental Crystal Structure Determination
Related Article: Souaibou Yaouba, Arto Valkonen, Paolo Coghi, Jiaying Gao, Eric M. Guantai, Solomon Derese, Vincent K. W. Wong, Máté Erdélyi, Abiy Yenesew|2018|Molecules|23|3199|doi:10.3390/molecules23123199
CCDC 1937082: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Gasper Maeda, Joan J.E. Munissi, Amra Gruhonjic, Paul A. Fitzpatrick, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Fangfang Pan, Rakesh Puttreddy, Vicky M. Avery, Máté Erdélyi|2019|Molecules|24|2746|doi:10.3390/molecules24152746
CCDC 1045993: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045986: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E