0000000000075922

AUTHOR

Vladimir Yushkov

showing 6 related works from this author

Evidence for heterogeneous chlorine activation in the tropical UTLS

2011

Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O<sub>3</sub> (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid …

Atmospheric Scienceairborne in-situ observationChemistrychemistry.chemical_elementAtmosphärische SpurenstoffeAtmospheric sciencesNitrogenlcsh:QC1-999JGas phaseAerosollcsh:ChemistryTropospherelcsh:QD1-999ddc:550ChlorineLife ScienceCirrusStratospherelcsh:Physics
researchProduct

Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms

2003

Abstract. Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10-4 have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work sugges…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceSupersaturationWork (thermodynamics)010504 meteorology & atmospheric sciencesChemistry[SDU.OCEAN] Sciences of the Universe [physics]/Ocean AtmosphereEvaporationAtmospheric sciences010502 geochemistry & geophysics01 natural scienceslcsh:QC1-999lcsh:Chemistrylcsh:QD1-999Liquid water content13. Climate actionPhase (matter)Tropical tropopauseddc:550UpwellingCirruslcsh:Physics0105 earth and related environmental sciencesUTTCsultrathin tropical tropospause
researchProduct

Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence

2003

Abstract. Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth's atmosphere. Individual UT…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric Science010504 meteorology & atmospheric sciencesIce crystals[SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphere010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:QC1-999lcsh:ChemistryAtmospherelcsh:QD1-99913. Climate actionClimatologyPhase (matter)Tropical tropopauseMixing ratioddc:550Environmental scienceCirrusTropopauseStratospherelcsh:Physics0105 earth and related environmental sciences
researchProduct

Dehydration potential of ultrathin clouds at the tropical tropopause

2003

[1] We report on the first simultaneous in situ and remote measurements of subvisible cirrus in the uppermost tropical troposphere. The observed cirrus, called UTTCs ( ultrathin tropical tropopause clouds), are the geometrically (200-300 m) and optically (t approximate to 10(-4)) thinnest large-scale clouds ever sampled (approximate to10(5) km(2)). UTTCs consist of only a few ice particles per liter with mean radius approximate to5 mum, containing only 1-5 % of the total water. Yet, brief adiabatic cooling events only 1-2 K below mean ambient temperature destabilize UTTCs, leading to large sedimenting particles (r approximate to 25 mm). Due to their extreme altitude above 17 km and low part…

Ice cloudMaterials scienceIce crystalsparticle micro-physicsdehydrationtropical tropopauseRadiusAtmospheric sciencesJTroposphereGeophysicsAltitudeddc:550General Earth and Planetary SciencesCirrussubvisible cirrus cloudsTropopauseStratosphere
researchProduct

In situ measurements of background aerosol and subvisible cirrus in the tropical tropopause region

2002

[1] In situ aerosol measurements were performed in the Indian Ocean Intertropical Convergence Zone (ITCZ) region during the Airborne Polar Experiment-Third European Stratospheric Experiment on Ozone (APE-THESEO) field campaign based in Mahe, Seychelles between 24 February and 6 March 1999. These are measurements of particle size distributions with a laser optical particle counter of the Forward Scattering Spectrometer Probe (FSSP)-300 type operated on the Russian M-55 high-altitude research aircraft Geophysica in the tropical upper troposphere and lower stratosphere up to altitudes of 21 km. On 24 and 27 February 1999, ultrathin layers of cirrus clouds were penetrated by Geophysica directly…

subvisualAtmospheric ScienceParticle numberMeteorologyaerosolsubvisible cirrusSoil SciencecirrusAquatic ScienceOceanographyAtmospheric sciencestropicsTroposphereGeochemistry and Petrologytropopauseddc:550Earth and Planetary Sciences (miscellaneous)StratosphereEarth-Surface ProcessesWater Science and TechnologyEcologybackgroundPaleontologyForestryJAerosolGeophysicsLidarSpace and Planetary ScienceEnvironmental scienceCirrusTropopauseParticle counterJournal of Geophysical Research: Atmospheres
researchProduct

Stratospheric aerosol measurements in the Arctic winter of 1996/1997 with the M-55 Geophysika high-altitude research aircraft

2000

In-situ aerosol measurements were performed in the northern hemispheric stratosphere up to altitudes of 21 km between 13 November 1996 and 14 January 1997, inside and outside of the polar vortex during the Airborne Polar Experiment (APE) field campaign. These are measurements of particle size distributions with a laser optical particle counter of the FSSP-300 type operated during 9 flights on the Russian M-55 high-altitude research aircraft Geophysika. For specific flights, the FSSP-300 measurements are compared with balloon-borne data (launched from Kiruna, Sweden). It was found that the stratospheric aerosol content reached levels well below the background concentrations measured by the N…

Atmospheric ScienceOzone010504 meteorology & atmospheric sciencesMeteorologyNorthern HemisphereSubsidence (atmosphere)010501 environmental sciencesAtmospheric sciences01 natural sciencesAerosolchemistry.chemical_compoundchemistryPolar vortexEnvironmental sciencePolarParticle counterStratosphere0105 earth and related environmental sciencesTellus B
researchProduct