0000000000076051

AUTHOR

Vladimir Bystrov

showing 3 related works from this author

Physical Fundamentals of Biomaterials Surface Electrical Functionalization

2020

This article is focusing on electrical functionalization of biomaterial&rsquo

Materials scienceBiocompatibilitySurface finishElectric chargelcsh:TechnologyArticleoxygen vacanciesSurface roughnesssurfacepoint defectsGeneral Materials ScienceWork functionSurface chargelcsh:Microscopylcsh:QC120-168.85roughnesslcsh:QH201-278.5business.industrylcsh:Thydroxyapatiteelectrical chargeSemiconductorChemical engineeringlcsh:TA1-2040Surface modificationfunctionalizationlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971biomaterialsMaterials
researchProduct

Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles

2011

In this work, the properties of hydroxyapatite (HAP) nanoparticles (NPs) have been studied both theoretically and experimentally focusing on computational analysis. HAP is widely used to fabricate implants, for drug delivery, etc. The physical properties of the nanosized HAP particles play an important role in the interaction with cells in the human body and are of great interest. Computer simulation was employed to understand the properties of HAP clusters (Ca(5)(PO(4))(3)OH) including formation energies, dipole moments and polarization (surface charges) by molecular mechanics (MM + , OPLS) and mostly by quantum semi-empirical Hartree-Fock (PM3) methods. The size of the simulated cluster i…

Models MolecularHydrogenMolecular Conformationchemistry.chemical_elementNanoparticleElectrons02 engineering and technologyElectron010402 general chemistry01 natural sciencesMolecular physicsPhysical PhenomenaCluster (physics)Computer SimulationGeneral Materials ScienceWork functionSurface chargeParticle SizeChemistryHydrogen bond021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCrystallographyDipoleDurapatiteNanoparticlesQuantum Theory0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct

Filling carbon nanotubes with magnetic particles

2013

Magnetic carbon nanotube composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature. Details about the production and characterization of these materials are described along with the experimental procedures employed. These magnetic carbon nanotubes have the potential to be used in a wide range of applications, in particular, the production of nanofluids, which can be controlled by appropriate magnetic fields.

Materials scienceCarbon nanofiberCarbon nanotube actuatorsMechanical properties of carbon nanotubesNanotechnology02 engineering and technologyGeneral ChemistryCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCAPILLARITY0104 chemical scienceslaw.inventionOptical properties of carbon nanotubesCondensed Matter::Materials ScienceCarbon nanobudPotential applications of carbon nanotubeslawCHEMISTRYMaterials ChemistryNANOPARTICLESMagnetic nanoparticles0210 nano-technology
researchProduct