0000000000076114

AUTHOR

Nadine Müller-calleja

Tissue factor pathway inhibitor primes monocytes for antiphospholipid antibody-induced thrombosis

Antiphospholipid antibodies (aPLs) with complex lipid and/or protein reactivities cause complement-dependent thrombosis and pregnancy complications. Although cross-reactivities with coagulation regulatory proteins contribute to the risk for developing thrombosis in patients with antiphospholipid syndrome, the majority of pathogenic aPLs retain reactivity with membrane lipid components and rapidly induce reactive oxygen species-dependent proinflammatory signaling and tissue factor (TF) procoagulant activation. Here, we show that lipid-reactive aPLs activate a common species-conserved TF signaling pathway. aPLs dissociate an inhibited TF coagulation initiation complex on the cell surface of m…

research product

Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies

The complement and coagulation cascades interact at multiple levels in thrombosis and inflammatory diseases. In venous thrombosis, complement factor 3 (C3) is crucial for platelet and tissue factor (TF) procoagulant activation dependent on protein disulfide isomerase (PDI). Furthermore, C5 selectively contributes to the exposure of leukocyte procoagulant phosphatidylserine (PS), which is a prerequisite for rapid activation of monocyte TF and fibrin formation in thrombosis. Here, we show that monoclonal cofactor-independent antiphospholipid antibodies (aPLs) rapidly activate TF on myelomonocytic cells. TF activation is blocked by PDI inhibitor and an anti-TF antibody interfering with PDI bin…

research product

Pathogenic lipid‐binding antiphospholipid antibodies are associated with severity of COVID‐19

Abstract Background Coronavirus disease 19 (COVID‐19)–associated coagulopathy is a hallmark of disease severity and poor prognosis. The key manifestations of this prothrombotic syndrome—microvascular thrombosis, stroke, and venous and pulmonary clots—are also observed in severe and catastrophic antiphospholipid syndrome. Antiphospholipid antibodies (aPL) are detectable in COVID‐19 patients, but their association with the clinical course of COVID‐19 remains unproven. Objectives To analyze the presence and relevance of lipid‐binding aPL in hospitalized COVID‐19 patients. Methods Two cohorts of 53 and 121 patients from a single center hospitalized for PCR‐proven severe acute respiratory syndro…

research product

Pathogenesis of antiphospholipid syndrome: recent insights and emerging concepts

Introduction: Even though our understanding of the antiphospholipid syndrome (APS) has improved tremendously over the last decades, we are still not in a position to replace symptomatic anticoagulation by pathogenesis based causal treatments. Areas covered: Recent years have provided further insights into pathogenetically relevant mechanisms. These include a differentiation of pathogenic subtypes of antiphospholipid antibodies (aPL), novel mechanisms modulating disease activity, for example, extracellular vesicles and microRNA, and novel players in pathogenesis, for example, neutrophils and neutrophil extracellular traps (NETs). Expert commentary: It is evident that aPL induce a proinflamma…

research product

Lipid presentation by the protein C receptor links coagulation with autoimmunity.

A lipid-protein autoimmunity target Several autoimmune diseases, including systemic lupus erythematosus and primary antiphospholipid syndrome, are characterized by the presence of antiphospholipid antibodies (aPLs). These molecules can activate the complement and coagulation cascades, which contributes to pathologies such as thrombosis, stroke, and pregnancy complications. Müller-Calleja et al. found that endothelial protein C receptor (EPCR) in complex with lysobisphosphatidic acid (LBPA) is the cell-surface target for aPL and mediates its internalization (see the Perspective by Kaplan). aPL binding to EPCR-LBPA resulted in the activation of tissue factor–mediated coagulation and interfero…

research product