0000000000076140

AUTHOR

Błażej Dziuk

Reactions of Piperazin-2-one, Morpholin-3-one, and Thiomorpholin-3-one with Triethyl Phosphite Prompted by Phosphoryl Chloride: Scope and Limitations

The reaction of the title lactams with triethyl phosphite prompted by phosphoryl chloride provided six-membered ring heterocyclic phosphonates or bisphosphonates. These novel scaffolds might be of interest as building blocks in medicinal chemistry. The course of the reaction was dependent on the structure of the used substrate. Thus, morpholin-3-one and thiomorpholin-3-one readily provided the corresponding 1,1-bisphosphonates (compounds 1, 2, 7, 14 and 16), whereas the protection of their nitrogen atom resulted in the formation of dehydrophosphonates (compounds 5, 6, and 8). Piperazin-2-one reacted differently yielding mixture of cis- and trans- piperazine-2,3-diyl-bisphosphonates (compoun…

research product

Triclinic conformational polymorph of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine (TCED)

Abstract The crystal and molecular structures of two polymorphs of N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine have been characterized by X-ray diffraction along with density functional theory (DFT) studies. The molecules differ from each other by conformation. N,N,N′,N′-tetrakis(2-cyanoethyl)-1,2-ethylenediamine has been synthesized by cyanoethylation of ethylenediamine. Cyanoethylation of vicinal diamines is important for the synthesis of hyperbranched polymeric materials applied as catalysts, surfactants and encapsulating agents in drug delivery systems. The molecular geometry of N,N,N′,N′-tetracyanoethyl-1,2-ethylenediamine is similar to that of homologous compounds. DFT calcul…

research product

The structural, phonon and optical properties of [CH3NH3]M0.5CrxAl0.5−x(HCOO)3 (M = Na, K; x = 0, 0.025, 0.5) metal–organic framework perovskites for luminescence thermometry

We report the structural, phonon and luminescence studies of six heterometallic perovskite-type metal–organic frameworks (MOFs) templated by methylammonium cations (CH3NH3+ and MeA+) with the following formulae: [MeA]Na0.5Cr0.5(HCOO)3 (MeANaCr), [MeA]K0.5Cr0.5(HCOO)3 (MeAKCr), [MeA]Na0.5Al0.5(HCOO)3 (MeANaAl), [MeA]K0.5Al0.5(HCOO)3 (MeAKAl), [MeA]Na0.5Cr0.025Al0.475(HCOO)3 (MeANaAlCr, 5 mol% of Cr3+ ions) and [MeA]K0.5Cr0.025Al0.475(HCOO)3 (MeAKAlCr, 5 mol% of Cr3+ ions). All of them crystallise in a monoclinic system (P21/n space group) with one MeA+ cation in an asymmetric unit forming four medium-strength hydrogen bonds (HBs) with a metal-formate framework. The DSC measurements and XRD s…

research product

Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides

Abstract The crystal and molecular structures of N′-(2-furylmethylidene)-3-(3-pyridyl)acrylohydrazide and N′-(2-thienylmethylidene)-3-(3-pyridyl)acrylohydrazide are reported, and the influence of the type of the heteroatom on the aromaticity of the aromatic rings is discussed. Both molecules are nearly planar. The geometry of the acrylohydrazide arrangement is comparable to that of homologous compounds. Density functional theory (DFT) calculations were performed in order to analyze the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecule. The most significant changes were observed in the values of the N–N and C–N bond lengths. The harmonic …

research product

Structural phase transitions coupled with prominent dielectric anomalies and dielectric relaxation in [(CH3)3NH]2[KCo(CN)6] and mixed [(CH3)3NH]2[KFexCo1−x(CN)6] double perovskite hybrids

The crystals of pure [(CH3)3NH]2[KFe(CN)6] (TrMAFe) and [(CH3)3NH]2[KCo(CN)6] (TrMACo) as well as their mixed crystals (TrMAFexCo1−x), with different ratios of x = 0, 0.12, 0.18, 0.49, 0.56, 0.73, 0.81, 1.0, have been grown from aqueous solutions. The structure of TrMACo has been determined at 360 K to be cubic (Fmm). In phase II (100 K), the TrMACo crystal is monoclinic (C2/c). The thermal stability of the pure and mixed crystals has been determined by using both DTA and TGA. Based on the DSC results, we have found a single phase transition (PT) for both pure and mixed crystals. The Fe(III) concentration was estimated by using the SEM technique. We have found a linear relationship between …

research product

Effect of conjugated system extension on structural features and electron-density distribution in charge–transfer difluoroborates

A comparative structural study of two related donor–acceptor pyridine-based BF2 complexes, namely, 3-(dimethylamino)-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C8H10BF2N3O (1), and 3-{(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl}-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C18H18BF2N3O (2), containing a dimethylamino group and either the shortest (in 1) or the longest (in 2) charge-transfer path known until now in this family of compounds, is presented. Single-crystal X-ray diffraction analysis supported by computational investigations shed more light on these systems, indicating, among other aspects, the predominance of C—H...F cont…

research product

N,N-Dicyclohexylnitramine

Molecules of the title compound, C12H22N2O2, are composed of an nitramine group substituted by two cyclohexane rings. The cyclohexane rings have chair conformations, with the exocyclic C—N bonds in axial orientations. In the crystal, C—H...O hydrogen bonds connect the molecules intoC(6) [-101] zigzag chains.

research product

2-[4-(Di­methyl­amino)­phen­yl]-3,3-di­fluoro-3H-naphtho­[1,2-e][1,3,2]oxaza­borinin-2-ium-3-uide

In the title compound, C19H17BF2N2O, a twist about the N—C single bond is observed, making the cross conjugation not as efficient as in the case of a planar structure. The borone complex has tetrahedral geometry. In the crystal, molecules are conected by weak C—H...F hydrogen bonds.

research product

π-Electron delocalization in 2-benzoyl-5-phenylpyrazolidin-3-one

Abstract The crystal and molecular structures of 2-benzoyl-5-phenylpyrazolidin-3-one have been characterized by X-ray diffraction along with density functional theory studies. Cinnamic acid chloride was reacted with benzhydrazide, yielding 2-benzoyl-5-phenylpyrazolidin-3-one. This product was formed in the transformation comprising the nucleophilic addition of benzhydrazide to the styryl fragment of the α,β-unsaturated arrangement and subsequent cyclization. The molecule contains two benzene rings and one five-membered heterocyclic ring with an N–N single bond. The five-membered ring is composed of three atoms of sp 3 hybridization and two atoms of sp 2 hybridization, which cause the flatte…

research product

4-Fluoro-N-methyl-N-nitroaniline

Molecules of the title compound, C7H7FN2O2, are composed of a nitramine group which is twisted with the respect to the aromatic ring, with an N—N—C—C torsion angle of −117.38 (12)°. In the molecule, the N—N bond length [1.3510 (15) Å] indicates some double-bond character, while the angle between the aromatic ring and the nitramine group rules out further delocalization in the molecule. In the crystal, C—H...F hydrogen bonds connect the molecules intoC11(6) chains along theaaxis. C—H...O hydrogen bonds form, which featureR22(12) loops and further connect these chains.

research product

A novel approach for obtaining α,β-diaminophosphonates bearing structurally diverse side chains and their interactions with transition metal ions studied by ITC

Aminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing N′-substituted α,β-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains. Thermodynamic analysis of the chosen aminophosphonates at physiological pH proves that they serve as potent chelators for copper(II) ions and moderate chelators for nickel(II) ions.

research product

Structures and energetic properties of 4-halobenzamides

The amide bond represents one of the most fundamental functional groups in chemistry. The properties of amides are defined by amidic resonance (nN→π*C=O conjugation), which enforces planarity of the six atoms comprising the amide bond. Despite the importance of 4-halo-substituted benzamides in organic synthesis, molecular interactions and medicinal chemistry, the effect of 4-halo-substitution on the properties of the amide bond in N,N-disubstituted benzamides has not been studied. Herein, we report the crystal structures and energetic properties of a full series of 4-halobenzamides. The structures of four 4-halobenzamides (halo = iodo, bromo, chloro and fluoro) in the N-morpholinyl series h…

research product

New crystal structures of fluorinated α-aminophosphonic acid analogues of phenylglycine

The four novel phosphonic acid analogues of phenylglycine with various substituents in phenyl ring (mostly fluorine atoms) have been synthesized by using procedure of amidoalkylation of phosphorus trichloride with aromatic aldehydes and acetamide. The NMR, ESI-MS spectroscopy, and single-crystal X-Ray diffraction methods were used to characterize unusual structures: the amino-(4-trifluoromethylbenzyl)-(1), amino-(3,4-difluorobenzyl)-(2), amino-(2,4,6-trifluorobenzyl)-(3), and amino-(2-fluoro-4-hydroxybenzyl)-(4) phosphonic acids. Since the α-aminophosphonates have a potential for biological activity and could be used as building blocks in medicinal chemistry, it is important to know their d…

research product

Michael additions to double bonds of esters of N-protected (s)-phenylalanyldehydroalanine (X-(s)-Phe-ΔAla-OMe) and its phosphonic acid counterpart (X-(s)-Phe-ΔAla-PO(OEt)2)

Electrophilic addition of amines, thiols and bromide to the double bonds of model dehydrodipeptides and dehydrophosphonodipeptide was studied. The double bond in these two classes of peptides reacted similarly and gave the same products. These results indicate that dehydropeptides are very good candidates as substrates for modifications of peptide side-chains.

research product

Copper‐Promoted Formation of Vinylsiloxanes

The metathesis reactions of chlorovinylsilanes with copper(I) oxide are reported. The process is catalyzed by HCl which can be in situ generated via hydrolysis of chlorosilanes by traces of water present in the system. An appearance of olefin/CuCl π‐intermediates can provide a stereoselectivity of the process and alter the pathway of siloxanes formation employing Cu2O as the source of oxygen. It was also shown that acetonitrile may be available as a solvent for construction of the systems with large preparative capabilities, including those based on the use atmospheric oxygen in siloxane synthesis.

research product

Crystal structure of bis-(allyl-ammonium) oxalate.

The title salt, 2C3H8N+·C2O42−, crystallized with six independent allylammonium cations and three independent oxalate dianions in the asymmetric unit. One of the oxalate dianions is nearly planar [dihedral angle between CO2planes = 1.91 (19)°], while the other two are twisted with angles of 11.3 (3) and 26.09 (13)°. One cation has a synperiplanar (cis) conformation with an N—C—C—C torsion angle of 0.9 (3)°, whereas the five remaining cations are characterized bygauchearrangements, with the N—C—C—C torsion angles ranging from 115.9 (12) to 128.8 (3)°. One of the allylammonium cations is positionally disordered (fixed occupancy ratio = 0.45:0.55). In the crystal, the cations and anions are co…

research product

Phosphonic Acid Analogs of Fluorophenylalanines as Inhibitors of Human and Porcine Aminopeptidases N: Validation of the Importance of the Substitution of the Aromatic Ring

International audience; A library of phosphonic acid analogs of phenylalanine substituted with fluorine, chlorine and trifluoromethyl moieties on the aromatic ring was synthesized and evaluated for inhibitory activity against human (hAPN) and porcine (pAPN) aminopeptidases. Fluorogenic screening indicated that these analogs are micromolar or submicromolar inhibitors, both enzymes being more active against hAPN. In order to better understand the mode of the action of the most active compounds, molecular modeling was used. It confirmed that aminophosphonic portion of the enzyme is bound nearly identically in the case of all the studied compounds, whereas the difference in activity results fro…

research product

Energetic study of bifurcated hydrogen bonds in secondary structures of salts composed with dicarboxylic acids and ethylamine

Abstract The nature of bifurcated hydrogen bonds prompted us to analyze the energy of supramolecular motifs on the example of new structures of carboxylic acids salts with amines, which guarantee a multitude of such interactions. Experimental and theoretical studies of four dicarboxylic salts with primary amine: ethylammonium succinate hydrate (1), tartrate hydrate (2) phthalate hydrate (3) and terephthalate (4) has been investigated along with study of the strength of interactions between the anions and cations. The complete topological analysis of the charge density for all new structures allowed designation of the estimated Cumulative Dissociation Energy (eCDE).

research product

2,2′-Bipyridin-1-ium hemioxalate oxalic acid monohydrate

The asymmetric unit of the title compound, C10H9N2 +·0.5C2O4 2−·C2H2O4·H2O, consists of a 2,2′-bipyridinium cation, half an oxalate dianion, one oxalic acid and one water molecule. One N atom in 2,2′-bipyridine is unprotonated, while the second is protonated and forms an N—H...O hydrogen bond. In the crystal, the anions are connected with surrounding acid molecules and water molecules by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the anions and oxalic acids; their O atoms participate as donors and acceptors, respectively, in O—H...O hydrogen bonds, which form sheets arranged parallel to the ac plane.

research product

N-Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling

N-Acyl-glutarimides have emerged as the most reactive precursors for N-C(O) bond cross-coupling reactions to date, wherein the reactivity is driven by ground-state destabilization of the amide bond. Herein, we report a full study on the effect of a glutarimide ring on the structures, electronic properties, and reactivity of fully perpendicular N-acyl-glutarimide amides. Most notably, this report demonstrates the generality of deploying N-acyl-glutarimides to achieve full twist of the acyclic amide bond, and results in the discovery of N-acyl-glutarimide amide with an almost perfect twist value, τ = 89.1°. X-ray structures of five new N-acyl-glutarimides are reported. Reactivity studies in t…

research product

Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities of the Products.

The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction-namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1) as a major product, along with N-ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E m…

research product

Symmetric Fluoroborate and its Boron Modification: Crystal and Electronic Structures

Four boron-carrying molecules were synthesized and purified. These were found to be (a) relatively neutral with respect to the parent BF derivative and (b) functionalized by donor&ndash

research product

Isostructural phase transition, quasielastic neutron scattering and magnetic resonance studies of a bistable dielectric ion-pair crystal [(CH3)2NH2]2KCr(CN)6

We have synthesised and characterised a novel organic–inorganic hybrid crystal, [(CH3)2NH2]2KCr(CN)6. The thermal DSC, TMA, DTG and DTA analyses indicate two solid-to-solid structural phase transitions (PTs). According to the X-ray diffraction experiments, the first PT at 220 K is isostructural, since it does not involve a change of the space group. This transition occurs between the states, where the (CH3)2NH2+ cations are orientationally disordered and ordered (frozen). The other reversible PT at 481 K leads to a melt-like phase similar to the one observed in plastic crystals or polar liquids. Dielectric spectroscopy has been used to characterise the switching properties of the dipole mom…

research product

The substituent effect of π-electron delocalization in N-methylamino-nitropyridine derivatives: crystal structure and DFT calculations

AbstractThe crystal and molecular structures of 3-(N-methylamino)-2-nitropyridine, 5-(N-methylamino)-2-nitropyridine and 2-(N-methylamino)-5-nitropyridine have been characterized by X-ray diffraction. To perform conformational analysis, the geometries of the compounds as well as their conformers and rotamers were optimized at the B3LYP/6-311++G(3df,3pd) level. The resulting data were used to analyze the π-electron delocalization effect in relation to the methylamino group rotation in ortho-, meta- and para-substitution positions. Quantitative aromaticity indices were calculated based on which we estimated the electronic structures of the analyzed compounds. The substituent effect of the met…

research product

N-(Pyrazin-2-yl)adamantane-1-carboxamide

Molecules of the title compound, C15H19N3O, are composed of an adamantine unit and a pyrazine ring connected to each other through an amide bond. The H—N—C=O moiety is close to planar [C—N—C—O and C—N—C—C torsion angles of 4.7 (2) and −173.8 (1)°, respectively]. The N3—C5 bond has partial double-bond character [1.370 (1) Å]. The geometries of the pyrazine ring and the adamantane substituent are normal and in good agreement with closely related structures. In the crystal, molecules are connected by N—H...O hydrogen bonds, forming zigzag chains in the [001] direction and are arranged in a herringbone fashion.

research product

Synthesis of 2-Aminothiazole Derivatives in Easy Two-Step, One-Pot Reaction

research product

2,2-Di­fluoro-3-(4-fluoro­phen­yl)-2H-benzo[e][1,3,2]oxaza­borinin-3-ium-2-uide

There is one independent molecule in the asymmetric unit of the title compound, C13H9BF3NO, which crystallizes in the non-centrosymmetric space groupCc. In the molecular structure, the BF2-carrying ring is distorted from planarity and its mean plane makes a dihedral angle of 42.3 (1)° with the 4-fluorophenyl ring. F atoms are involved in all of the short intermolecular contacts of the crystal structure, which link molecules to form chains along [001] and [010].

research product

Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions

The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-c…

research product

The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT theoretical study

Abstract Reaction of 3-nitroisoxazoline-2-oxide with monosubstituted ethenes, first time documented fifty years ago, have been reviewed. Structures of phenyl and cyano derivatives of 1-aza-2,8-dioxabicyclo[3.3.0]octane produced in [3 + 2] cycloaddition (32CA) between styrene and acrylonitrile with 3-nitroisoxazoline-2-oxide were determined through single crystal XRD analysis. The molecular mechanism of the title 32CA has been also analyzed within the Molecular Electron Density Theory (MEDT) based on the M06-2X(PCM)/6-311 + G(d,p) calculations.

research product

Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization

A series of catalysts, (Py-ox)TiCl4, (Py-box)TiCl4, (Py-ox)VCl3, (Py-box)VCl3, SIL/(Py-ox)VCl3, SIL/(Py-box)VCl3, with 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box) ligands, silica support modified by 1-[3-(triethoxysilyl)propyl]pyridinium ethylchloroaluminate ionic liquid (SIL), activated by AlEt2Cl, AlEtCl2, and methylaluminoxane (MMAO) were studied in ethylene polymerization and ethylene-norbornene copolymerization. Single-crystal X-ray diffraction is given for both Py-ox and Py-box. The complexation was confirmed by NMR and ESI-MS methods. All complexes were found to be active in ethylene polymerization with better performance of the vanadium cata…

research product

Acetylhydroxamic acid

There is one independent molecule in the asymmetric unit of the title compound (alternatively namedN-hydroxyacetamide), C2H5NO2. It crystallizes in the noncentrosymmetric space groupP43. The structure is an anhydrous form of acetylhydroxamic acid with typical geometry that corresponds well with the hydrated structure described by Bracher & Small [Acta Cryst.(1970), B26, 1705–1709]. In the crystal, N—H...O and O—H...O hydrogen bonds connect the molecules into chains in thec-axis direction.

research product

Spectral and structural insights of copper reduction pathways in the system of CuX2-R2S (X=Cl, Br; R=allyl, n-propyl)

Abstract We have explored the behaviour of Cu(II)/Cu(I) redox couple in the system CuX2-R2S, X = Cl, Br; R = allyl, n-propyl, under anhydrous and anaerobic conditions, thus simulating the reduction half cycle in the copper catalyzed oxidation of thioethers. In doing so, the Cl−Br substitution was critical for tuning the reduction potentials, while the replacement of propyl group by allyl group supported the trapping of oxidation by-product, halogen molecules. It was therefore possible to use the spectrophotometric titration, thereby providing information on the distribution of complex species in acetonitrile solution. The study showed that the trinuclear mixed−valence copper (I-II-II) aggre…

research product

Annular Tautomerism of 3(5)-Disubstituted-1H-pyrazoles with Ester and Amide Groups

A series of disubstituted 1H-pyrazoles with methyl (1), amino (2), and nitro (3) groups, as well as ester (a) or amide (b) groups in positions 3 and 5 was synthesized, and annular tautomerism was investigated using X-ray, theoretical calculations, NMR, and FT-IR methods. The X-ray experiment in the crystal state showed for the compounds with methyl (1a, 1b) and amino (2b) groups the tautomer with ester or amide groups at position 3 (tautomer 3), but for those with a nitro group (3b, 4), tautomer 5. Similar results were obtained in solution by NMR NOE experiments in CDCl3, DMSO-d6, and CD3OD solvents. However, tautomer equilibrium was observed for 2b in DMSO. The FT-IR spectra in chloroform …

research product

Self-assembly mechanism based on charge density topological interaction energies

The packing interactions have been evaluated in the context of the self-assembly mechanism of crystal growth and also for its impacts on the aromaticity of the trimesate anion. The structure of ethylammonium trimesate hydrate (1) measured at 100 K and a charge density model, derived in part from theoretical structures, is reported. Theoretical structure factors were obtained from the geometry-optimized periodic wave function. The trimesic acid portion of 1 is fully deprotonated and participates in a variety hydrogen bonding motifs. Topological analysis of the charge density model reveals the most significant packing interactions and is then compared to a complementary analysis performed by …

research product

A new copper(II) chelate complex with polyamines as fire retardant and epoxy hardener: Synthesis, crystal and electronic structure, and thermal behavior of (ethylenediamine-N,N′)-(diethylenetriamine-N,N′,N″)-copper(II) hexafluoridosilicate

A new (ethylenediamine-N,N′)-(diethylenetriamine-N,N′,N″)-copper(II) hexafluoridosilicate complex, [Cu(eda)(deta)]SiF6 (1) (eda – ethylenediamine; deta – diethylenetriamine), was synthesized by direct interaction of anhydrous CuSiF6 with polyethylenepolyamine (pepa – H2N[C2H4NH]nH, where n = 1 (eda) and 2 (deta)). The crystals of 1 were characterized by IR spectroscopy and X-ray diffraction. Compound 1 consists of SiF62− discrete anions and [Cu(eda)(deta)]2+ complex cations whose Cu2+ ions are chelated by eda and deta. The coordination polyhedron of Cu(II) atom is an elongated square pyramid which consists of four nitrogen atoms belonging to NH2 groups of eda and NH2 and NH groups of …

research product

N,N′-Bis(pyridin-2-yl)octanediamide

The complete molecule of the title compound, C18H22N4O2, is generated by crystallographic inversion symmetry. In the crystal, N—H...N hydrogen bonds connect the molecules into [010] chains, which featureR22(8) loops. The packing is consolidated by C—H...O interactions.

research product

Crystal structure of allyl­ammonium hydrogen succinate at 100 K

The asymmetric unit of the title compound, C2H8N+·C4H5O4−, consists of two allylammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfectsyn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by agaucheconformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H...O hydrogen bonds between anions, with t…

research product

Screening Ferroelastic Transitions in Switchable Cyano-Bridged Perovskites: [CH3C(NH2)2]2[KM(CN)6], M = Cr3+, Fe3+, Co3+. Crystal Structure Characterization, Dielectric Properties, 1H NMR, and Quasielastic Neutron Scattering Studies

Here we report the dynamics of organic cations as guest molecules in the novel perovskite host framework. The novel switchable crystals from the coordination family [CH3C(NH2)2]2[KB″(CN)6] were con...

research product

2-(1,3-Oxazolin-2-yl)pyridine and 2,6-bis(1,3-oxazolin-2-yl) pyridine

The data presented in this article are related to research articles “Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization (Ochędzan-Siodłak et al., 2018). For the title compounds, 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box), the single-crystal X-ray diffraction measurement together with NMR, GC, MS, DSC analysis, like also the method of crystallization are presented. Keywords: Ligands, Oxazoline, Pyridine, Conformation, Association

research product

Synthesis and Inhibitory Studies of Phosphonic Acid Analogues of Homophenylalanine and Phenylalanine towards Alanyl Aminopeptidases.

A library of novel phosphonic acid analogues of homophenylalanine and phenylalanine, containing fluorine and bromine atoms in the phenyl ring, have been synthesized. Their inhibitory properties against two important alanine aminopeptidases, of human (hAPN, CD13) and porcine (pAPN) origin, were evaluated. Enzymatic studies and comparison with literature data indicated the higher inhibitory potential of the homophenylalanine over phenylalanine derivatives towards both enzymes. Their inhibition constants were in the submicromolar range for hAPN and the micromolar range for pAPN, with 1-amino-3-(3-fluorophenyl) propylphosphonic acid (compound 15c) being one of the best low-molecular inhibitors …

research product

Barriers to rotation in ortho-substituted tertiary aromatic amides: Effect of chloro-substitution on resonance and distortion

Planarity of the amide bond represents one of the most widely recognized properties of amides. Herein, we report a combined structural and computational study on the effect of ortho-substitution on resonance and barriers to rotation in tertiary aromatic amides. We demonstrate that ortho-chloro substitution in a class of benzamides that are important from the reactivity and medicinal chemistry perspective results in increased barriers to rotation around both the N-C(O) and C-C(O) axes. The effect of steric hindrance on structures, resonance energies, barriers to rotation, and proton affinities is discussed. The present study strongly supports the use of ortho-substitution in common benzamide…

research product

Ring opening polymerization of ε-caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand

AbstractA phenoxy-imine proligand with the additional OH donor group, 4,6-tBu2-2-(2-CH2(OH)-C6H4N = CH)C6H3OH (LH2), was synthesized and used to prepare group 4 and 5 complexes by reacting with Ti(OiPr)4 (LTi) and VO(OiPr)3 (LV). All new compounds were characterized by the FTIR, 1H and 13C NMR spectroscopy and LTi by the single-crystal X-ray diffraction analysis. The complexes were used as catalysts in the ring opening polymerization of ε-caprolactone. The influence of monomer/transition metal molar ratio, reaction time, polymerization temperature as well as complex type was investigated in detail. The complexes showed high (LTi) and moderate (LV) activity in ε-caprolactone polymerization a…

research product

Crystal structure of isobutylammonium hydrogen oxalate hemihydrate

In the title hydrated molecular salt, C4H12N+·C2HO4−·0.5H2O, the O atom of the water molecule lies on a crystallographic twofold axis. The dihedral angle between the CO2and CO2H planes of the anion is 18.47 (8)°. In the crystal, the anions are connected to each other by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the chains of anions and isobutylamine cations; their O atoms participate as donors and acceptors, respectively, in O—H...O and N—H...O hydrogen bonds, which form channels (dimensions = 4.615 and 3.387 Å) arranged parallel to [010].

research product

2-Methyl-N-(pyrazin-2-yl)propanamide–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1)

In the title compound, C8H11N3O·0.5C6F4I2, molecules ofiPr-substituted pyrazine are co-crystallized with 1,4-diiodo-2,3,5,6-tetrafluorobenzene. The complete molecule of 1,4-diiodo-2,3,5,6-tetrafluorobenzene is generated by an inversion centre at the middle of the aromatic ring. Both molecules have normal geometry and theiPr acylamine group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. In the crystal, the components are linked by I...N halogen bonds [2.830 (2) Å] and C—H...F interactions are observed.

research product

Allylammonium hydrogen oxalate hemihydrate

In the title hydrated molecular salt, C3H8N+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3)° and the dihedral angle between the CO2and CO2H planes in the anion is 1.0 (4)°. In the crystal, the hydrogen oxalate ions are linked by O—H...O hydrogen bonds, generating [010] chains. The allylammonium cations bond to the chains through N—H...O and N—H...(O,O) hydrogen bonds. The water molecule accepts two N—H...O hydrogen bonds and makes two O—H...O hydrogen bonds. Together, the hydrogen bonds generate (100) sheets.

research product

CCDC 1897453: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Grażyna Bator, Bartosz Zarychta, Błażej Dziuk, Damian K. Skałecki, Wojciech Medycki, Michaela Zamponi|2019|Cryst.Growth Des.|19|4526|doi:10.1021/acs.cgd.9b00298

research product

CCDC 1969088: Experimental Crystal Structure Determination

Related Article: Md. Mahbubur Rahman, Chengwei Liu, Elwira Bisz, Błażej Dziuk, Roger Lalancette, Qi Wang, Hao Chen, Roman Szostak, Michal Szostak|2020|J.Org.Chem.|85|5475|doi:10.1021/acs.joc.0c00227

research product

CCDC 1825064: Experimental Crystal Structure Determination

Related Article: Anna Kusakiewicz-Dawid, Monika Porada, Błażej Dziuk, Dawid Siodłak|2019|Molecules|24|2632|doi:10.3390/molecules24142632

research product

CCDC 1847383: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1897452: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Grażyna Bator, Bartosz Zarychta, Błażej Dziuk, Damian K. Skałecki, Wojciech Medycki, Michaela Zamponi|2019|Cryst.Growth Des.|19|4526|doi:10.1021/acs.cgd.9b00298

research product

CCDC 1869152: Experimental Crystal Structure Determination

Related Article: Weronika Wanat, Błażej Dziuk, Paweł Kafarski|2020|Struct.Chem.|31|1197|doi:10.1007/s11224-019-01483-x

research product

CCDC 1962246: Experimental Crystal Structure Determination

Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134

research product

CCDC 1898860: Experimental Crystal Structure Determination

Related Article: Przemysław Woliński, Agnieszka Kącka-Zych, Błażej Dziuk, Krzysztof Ejsmont, Agnieszka Łapczuk-Krygier, Ewa Dresler|2019|J.Mol.Struct.|1192|27|doi:10.1016/j.molstruc.2019.04.061

research product

CCDC 1533753: Experimental Crystal Structure Determination

Related Article: Karolina Jasiak, Agnieszka Kudelko, Katarzyna Gajda, Błażej Dziuk, Bartosz Zarychta, Krzysztof Ejsmont|2018|Z.Naturforsch.,B:Chem.Sci.|73|725|doi:10.1515/znb-2018-0132

research product

CCDC 1847385: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1888866: Experimental Crystal Structure Determination

Related Article: Rubén Oswaldo Argüello-Velasco, Błażej Dziuk, Bartosz Zarychta, Mario Ordóñez, Paweł Kafarski|2019|ACS Omega|4|9056|doi:10.1021/acsomega.9b01137

research product

CCDC 1572932: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

research product

CCDC 1836882: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1850771: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Krzysztof Ejsmont, Bartosz Zarychta|2020|J.Mol.Struct.|1209|127945|doi:10.1016/j.molstruc.2020.127945

research product

CCDC 1948113: Experimental Crystal Structure Determination

Related Article: Paulina Sołtysiak, Błażej Dziuk, Bartosz Zarychta, Krzysztof Ejsmont, Grzegorz Spaleniak|2020|Struct.Chem.|31|1185|doi:10.1007/s11224-020-01514-y

research product

CCDC 1430837: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Christopher G. Gianopoulos, Krzysztof Ejsmont, Bartosz Zarychta|2018|Struct.Chem.|29|703|doi:10.1007/s11224-017-1060-6

research product

CCDC 623096: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Janusz B. Kyzioł, Jacek Zaleski, Krzysztof Ejsmont, Bartosz Zarychta|2018|J.Heterocycl.Chem.|55|763|doi:10.1002/jhet.3086

research product

CCDC 1528272: Experimental Crystal Structure Determination

Related Article: Bartłomiej Bereska, Krystyna Czaja, Krzysztof Ejsmont, Błażej Dziuk, Bartosz Zarychta, Jolanta Iłowska, Michał Szmatoła, Agnieszka Bereska|2018|Z.Naturforsch.,B:Chem.Sci.|73|305|doi:10.1515/znb-2018-0015

research product

CCDC 1574211: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Krzysztof Ejsmont, Bartosz Zarychta|2020|J.Mol.Struct.|1209|127945|doi:10.1016/j.molstruc.2020.127945

research product

CCDC 1898859: Experimental Crystal Structure Determination

Related Article: Przemysław Woliński, Agnieszka Kącka-Zych, Błażej Dziuk, Krzysztof Ejsmont, Agnieszka Łapczuk-Krygier, Ewa Dresler|2019|J.Mol.Struct.|1192|27|doi:10.1016/j.molstruc.2019.04.061

research product

CCDC 1895969: Experimental Crystal Structure Determination

Related Article: Paulina Sołtysiak, Błażej Dziuk, Bartosz Zarychta, Krzysztof Ejsmont, Grzegorz Spaleniak|2020|Struct.Chem.|31|1185|doi:10.1007/s11224-020-01514-y

research product

CCDC 1574209: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Krzysztof Ejsmont, Bartosz Zarychta|2020|J.Mol.Struct.|1209|127945|doi:10.1016/j.molstruc.2020.127945

research product

CCDC 1897454: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Grażyna Bator, Bartosz Zarychta, Błażej Dziuk, Damian K. Skałecki, Wojciech Medycki, Michaela Zamponi|2019|Cryst.Growth Des.|19|4526|doi:10.1021/acs.cgd.9b00298

research product

CCDC 1969085: Experimental Crystal Structure Determination

Related Article: Md. Mahbubur Rahman, Chengwei Liu, Elwira Bisz, Błażej Dziuk, Roger Lalancette, Qi Wang, Hao Chen, Roman Szostak, Michal Szostak|2020|J.Org.Chem.|85|5475|doi:10.1021/acs.joc.0c00227

research product

CCDC 1962243: Experimental Crystal Structure Determination

Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134

research product

CCDC 1825063: Experimental Crystal Structure Determination

Related Article: Anna Kusakiewicz-Dawid, Monika Porada, Błażej Dziuk, Dawid Siodłak|2019|Molecules|24|2632|doi:10.3390/molecules24142632

research product

CCDC 1869153: Experimental Crystal Structure Determination

Related Article: Weronika Wanat, Błażej Dziuk, Paweł Kafarski|2020|Struct.Chem.|31|1197|doi:10.1007/s11224-019-01483-x

research product

CCDC 1529401: Experimental Crystal Structure Determination

Related Article: Paweł Lenartowicz, Błażej Dziuk, Bartosz Zarychta, Maciej Makowski, Paweł Kafarski|2017|Phosphorus,Sulfur,Silicon,Relat.Elem.|192|706|doi:10.1080/10426507.2017.1308933

research product

CCDC 1888865: Experimental Crystal Structure Determination

Related Article: Rubén Oswaldo Argüello-Velasco, Błażej Dziuk, Bartosz Zarychta, Mario Ordóñez, Paweł Kafarski|2019|ACS Omega|4|9056|doi:10.1021/acsomega.9b01137

research product

CCDC 1888868: Experimental Crystal Structure Determination

Related Article: Rubén Oswaldo Argüello-Velasco, Błażej Dziuk, Bartosz Zarychta, Mario Ordóñez, Paweł Kafarski|2019|ACS Omega|4|9056|doi:10.1021/acsomega.9b01137

research product

CCDC 1877301: Experimental Crystal Structure Determination

Related Article: Julia Fryga, Marzena Białek, Grzegorz Spaleniak, Błażej Dziuk|2021|J.Poly.Res.|28||doi:10.1007/s10965-021-02419-y

research product

CCDC 1534466: Experimental Crystal Structure Determination

Related Article: Elwira Bisz, Aleksandara Piontek, Błażej Dziuk, Roman Szostak and Michal Szostak|2018|J.Org.Chem.|83|3159|doi:10.1021/acs.joc.8b00019

research product

CCDC 1534465: Experimental Crystal Structure Determination

Related Article: Elwira Bisz, Aleksandara Piontek, Błażej Dziuk, Roman Szostak and Michal Szostak|2018|J.Org.Chem.|83|3159|doi:10.1021/acs.joc.8b00019

research product

CCDC 1962245: Experimental Crystal Structure Determination

Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134

research product

CCDC 1869154: Experimental Crystal Structure Determination

Related Article: Weronika Wanat, Błażej Dziuk, Paweł Kafarski|2020|Struct.Chem.|31|1197|doi:10.1007/s11224-019-01483-x

research product

CCDC 1572931: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

research product

CCDC 1529397: Experimental Crystal Structure Determination

Related Article: Paweł Lenartowicz, Błażej Dziuk, Bartosz Zarychta, Maciej Makowski, Paweł Kafarski|2017|Phosphorus,Sulfur,Silicon,Relat.Elem.|192|706|doi:10.1080/10426507.2017.1308933

research product

CCDC 1831147: Experimental Crystal Structure Determination

Related Article: Helen Lavrenyuk, Borys Mykhalichko, Błażej Dziuk, Volodymyr Olijnyk, Oleg Mykhalichko|2018|Arab.J.Chem.|13|3060|doi:10.1016/j.arabjc.2018.08.014

research product

CCDC 1815355: Experimental Crystal Structure Determination

Related Article: Wioletta Ochędzan-Siodłak, Anna Bihun-Kisiel, Dawid Siodłak, Anna Poliwoda, Błażej Dziuk|2018|Data in Brief|21|449|doi:10.1016/j.dib.2018.09.129

research product

CCDC 1580983: Experimental Crystal Structure Determination

Related Article: Wioletta Ochędzan-Siodłak, Anna Bihun-Kisiel, Dawid Siodłak, Anna Poliwoda, Błażej Dziuk|2018|Data in Brief|21|449|doi:10.1016/j.dib.2018.09.129

research product

CCDC 623097: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Janusz B. Kyzioł, Jacek Zaleski, Krzysztof Ejsmont, Bartosz Zarychta|2018|J.Heterocycl.Chem.|55|763|doi:10.1002/jhet.3086

research product

CCDC 1836883: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1895970: Experimental Crystal Structure Determination

Related Article: Paulina Sołtysiak, Błażej Dziuk, Bartosz Zarychta, Krzysztof Ejsmont, Grzegorz Spaleniak|2020|Struct.Chem.|31|1185|doi:10.1007/s11224-020-01514-y

research product

CCDC 1836884: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1836885: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1528273: Experimental Crystal Structure Determination

Related Article: Bartłomiej Bereska, Krystyna Czaja, Krzysztof Ejsmont, Błażej Dziuk, Bartosz Zarychta, Jolanta Iłowska, Michał Szmatoła, Agnieszka Bereska|2018|Z.Naturforsch.,B:Chem.Sci.|73|305|doi:10.1515/znb-2018-0015

research product

CCDC 1897455: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Grażyna Bator, Bartosz Zarychta, Błażej Dziuk, Damian K. Skałecki, Wojciech Medycki, Michaela Zamponi|2019|Cryst.Growth Des.|19|4526|doi:10.1021/acs.cgd.9b00298

research product

CCDC 1847386: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1962244: Experimental Crystal Structure Determination

Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134

research product

CCDC 1516180: Experimental Crystal Structure Determination

Related Article: Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska|2017|Molecules|22|254|doi:10.3390/molecules22020254

research product

CCDC 1935968: Experimental Crystal Structure Determination

Related Article: Paweł Lenartowicz, Danuta Witkowska, Beata Żyszka-Haberecht, Błażej Dziuk, Krzysztof Ejsmont, Jolanta Świątek-Kozłowska, Paweł Kafarski|2020|RSC Advances|10|24045|doi:10.1039/D0RA03764H

research product

CCDC 1969087: Experimental Crystal Structure Determination

Related Article: Md. Mahbubur Rahman, Chengwei Liu, Elwira Bisz, Błażej Dziuk, Roger Lalancette, Qi Wang, Hao Chen, Roman Szostak, Michal Szostak|2020|J.Org.Chem.|85|5475|doi:10.1021/acs.joc.0c00227

research product

CCDC 1572930: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

research product

CCDC 1969082: Experimental Crystal Structure Determination

Related Article: Md. Mahbubur Rahman, Chengwei Liu, Elwira Bisz, Błażej Dziuk, Roger Lalancette, Qi Wang, Hao Chen, Roman Szostak, Michal Szostak|2020|J.Org.Chem.|85|5475|doi:10.1021/acs.joc.0c00227

research product

CCDC 1847384: Experimental Crystal Structure Determination

Related Article: Maciej Ptak, Błażej Dziuk, Dagmara Stefańska, Krzysztof Hermanowicz|2019|Phys.Chem.Chem.Phys.(PCCP)|21|7965|doi:10.1039/C9CP01043B

research product

CCDC 1888867: Experimental Crystal Structure Determination

Related Article: Rubén Oswaldo Argüello-Velasco, Błażej Dziuk, Bartosz Zarychta, Mario Ordóñez, Paweł Kafarski|2019|ACS Omega|4|9056|doi:10.1021/acsomega.9b01137

research product

CCDC 1825061: Experimental Crystal Structure Determination

Related Article: Anna Kusakiewicz-Dawid, Monika Porada, Błażej Dziuk, Dawid Siodłak|2019|Molecules|24|2632|doi:10.3390/molecules24142632

research product

CCDC 1844066: Experimental Crystal Structure Determination

Related Article: Anna Kusakiewicz-Dawid, Monika Porada, Błażej Dziuk, Dawid Siodłak|2019|Molecules|24|2632|doi:10.3390/molecules24142632

research product

CCDC 1572933: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

research product

CCDC 1935969: Experimental Crystal Structure Determination

Related Article: Paweł Lenartowicz, Danuta Witkowska, Beata Żyszka-Haberecht, Błażej Dziuk, Krzysztof Ejsmont, Jolanta Świątek-Kozłowska, Paweł Kafarski|2020|RSC Advances|10|24045|doi:10.1039/D0RA03764H

research product

CCDC 1869151: Experimental Crystal Structure Determination

Related Article: Weronika Wanat, Błażej Dziuk, Paweł Kafarski|2020|Struct.Chem.|31|1197|doi:10.1007/s11224-019-01483-x

research product

CCDC 1520500: Experimental Crystal Structure Determination

Related Article: Monika Olesiejuk, Agnieszka Kudelko, Katarzyna Gajda, Błażej Dziuk, Krzysztof Ejsmont|2018|Z.Naturforsch.,B:Chem.Sci.|73|577|doi:10.1515/znb-2018-0072

research product

CCDC 1965548: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Bartosz Zarychta, Marcin Moskwa, Błażej Dziuk, Wojciech Medycki, Grażyna Bator|2020|Dalton Trans.|49|1830|doi:10.1039/C9DT04703D

research product

CCDC 1965549: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Bartosz Zarychta, Marcin Moskwa, Błażej Dziuk, Wojciech Medycki, Grażyna Bator|2020|Dalton Trans.|49|1830|doi:10.1039/C9DT04703D

research product

CCDC 1533752: Experimental Crystal Structure Determination

Related Article: Karolina Jasiak, Agnieszka Kudelko, Katarzyna Gajda, Błażej Dziuk, Bartosz Zarychta, Krzysztof Ejsmont|2018|Z.Naturforsch.,B:Chem.Sci.|73|725|doi:10.1515/znb-2018-0132

research product

CCDC 1825062: Experimental Crystal Structure Determination

Related Article: Anna Kusakiewicz-Dawid, Monika Porada, Błażej Dziuk, Dawid Siodłak|2019|Molecules|24|2632|doi:10.3390/molecules24142632

research product

CCDC 1574210: Experimental Crystal Structure Determination

Related Article: Błażej Dziuk, Krzysztof Ejsmont, Bartosz Zarychta|2020|J.Mol.Struct.|1209|127945|doi:10.1016/j.molstruc.2020.127945

research product

CCDC 1969086: Experimental Crystal Structure Determination

Related Article: Md. Mahbubur Rahman, Chengwei Liu, Elwira Bisz, Błażej Dziuk, Roger Lalancette, Qi Wang, Hao Chen, Roman Szostak, Michal Szostak|2020|J.Org.Chem.|85|5475|doi:10.1021/acs.joc.0c00227

research product

CCDC 1538098: Experimental Crystal Structure Determination

Related Article: A. Piontek, E. Bisz, B. Dziuk, R. Szostak, M. Szostak|2018|Acta Crystallogr.,Sect.C:Cryst.Struct.Chem.|74|1395|doi:10.1107/S2053229618013463

research product

CCDC 1897451: Experimental Crystal Structure Determination

Related Article: Magdalena Rok, Grażyna Bator, Bartosz Zarychta, Błażej Dziuk, Damian K. Skałecki, Wojciech Medycki, Michaela Zamponi|2019|Cryst.Growth Des.|19|4526|doi:10.1021/acs.cgd.9b00298

research product