Properties of dirty two-band superconductors with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response
Disorder in two-band superconductors with repulsive interband interaction induces a frustrated competition between the phase-locking preferences of the various potential and kinetic terms. This frustrated interaction can result in the formation of an $s+is$ superconducting state, that breaks the time-reversal symmetry. In this paper we study the normal modes and their associated coherence lengths in such materials. We especially focus on the consequences of the soft modes stemming from the frustration and time-reversal-symmetry breakdown. We find that two-bands superconductors with such impurity-induced frustrated interactions display a rich spectrum of physical properties that are absent i…
Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parame…
Change of the vortex core structure in two-band superconductors at impurity-scattering-driven $s_\pm/s_{++}$ crossover
We report a nontrivial transition in the core structure of vortices in two-band superconductors as a function of interband impurity scattering. We demonstrate that, in addition to singular zeros of the order parameter, the vortices there can acquire a circular nodal line around the singular point in one of the superconducting components. It results in the formation of the peculiar "moat"-like profile in one of the superconducting gaps. The moat-core vortices occur generically in the vicinity of the impurity-induced crossover between $s_{\pm}$ and $s_{++}$ states.
Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. Fo ...
Phase diagram of dirty two-band superconductors and observability of impurity-induced s + i s state
We investigate the phase diagram of dirty two-band superconductors. This paper primarily focuses on the properties and observability of the time-reversal symmetry-breaking s + is superconducting states, which can be generated in two-band superconductors by interband impurity scattering. We show that such states can appear in two distinct ways. First, according to a previously discussed scenario, the s + is state can form as an intermediate phase at the impurity-driven crossover between s± and s++ states. We show that there is a second scenario where domains of the s + is state exists in the form of an isolated dome inside the s± domain, completely detached from the transition between s± and…
Field-induced coexistence of $s_{++}$ and $s_{\pm}$ superconducting states in dirty multiband superconductors
In multiband systems, such as iron-based superconductors, the superconducting states with locking and anti-locking of the interband phase differences, are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the $s_{\pm}$ state (which favors phase anti locking) and the $s_{++}$ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp $s_{\pm}\to s_{++}$ crossover but rather a washed-out crossover to a…
Change of the vortex core structure in two-band superconductors at the impurity-scattering-driven s±/s++ crossover
We report a nontrivial transition in the core structure of vortices in two-band superconductors as a function of interband impurity scattering. We demonstrate that, in addition to singular zeros of the order parameter, the vortices there can acquire a circular nodal line around the singular point in one of the superconducting components. It results in the formation of the peculiar “moat”-like profile in one of the superconducting gaps. The moat-core vortices occur generically in the vicinity of the impurity-induced crossover between s± and s++ states. peerReviewed
Change of the vortex core structure in two-band superconductors at the impurity-scattering-driven s±/s++ crossover
We report a nontrivial transition in the core structure of vortices in two-band superconductors as a function of interband impurity scattering. We demonstrate that, in addition to singular zeros of the order parameter, the vortices there can acquire a circular nodal line around the singular point in one of the superconducting components. It results in the formation of the peculiar ``moat''-like profile in one of the superconducting gaps. The moat-core vortices occur generically in the vicinity of the impurity-induced crossover between ${s}_{\ifmmode\pm\else\textpm\fi{}}$ and ${s}_{++}$ states.
Phase diagram of dirty two-band superconductors and observability of impurity-induced $s+is$ state
We investigate the phase diagram of dirty two-band superconductors. This paper primarily focuses on the properties and observability of the time-reversal symmetry-breaking $s+is$ superconducting states, which can be generated in two-band superconductors by interband impurity scattering. We show that such states can appear in two distinct ways. First, according to a previously discussed scenario, the $s+is$ state can form as an intermediate phase at the impurity-driven crossover between $s_{\pm}$ and $s_{++}$ states. We show that there is a second scenario where domains of the $s+is$ state exists in the form of an isolated dome inside the $s_{\pm}$ domain, completely detached from the transi…