0000000000076680
AUTHOR
M. R. Zapatero Osorio
New constraints on the presence of debris disks around G 196-3 B and VHS J125601.92-125723.9 b
We obtained deep images of G 196-3 B and VHS J1256-1257 b with the NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm. These data were combined with recently published Atacama Large Millimeter Array (ALMA) and Very Large Array (VLA) data of VHS J1256-1257 b at 0.87 mm and 0.9 cm, respectively. Neither G 196-3 B nor VHS J1256-1257 b were detected in the NOEMA, ALMA and VLA data. At 1.3 mm, we imposed flux upper limits of 0.108 mJy (G 196-3 B) and 0.153 mJy (VHS J1256-1257 b) with a 3-sigma confidence. Using the flux upper limits at the millimeter and radio wavelength regimes, we derived maximum values of 0.016 M$_{\rm Earth}$ and 0.004 M$_{\rm Earth}$ for the mass of any cold dust that mig…
Radio emission in ultracool dwarfs: the nearby substellar triple system VHS 1256$-$1257
Aims. With the purpose of investigating the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92-125723.9 (hereafter VHS 1256-1257); this system is composed by an equal-mass M7.5 binary and a L7 low-mass substellar object located at only 15.8 pc. Methods. We observed in phase-reference mode the system VHS 1256-1257 with the Karl G. Jansky Very Large Array at X band and L band and with the European VLBI Network at L band in several epochs during 2015 and 2016. Results. We discovered radio emission at X band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 μJy. We determined a spectral index α …
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…