0000000000076704

AUTHOR

L. B. Bezrukov

showing 22 related works from this author

Underground cosmic-ray experiment EMMA

2013

EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 − 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyh¨asalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented. nonPeerReviewed

PhysicsHistoryMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsCosmic rayKnee regionComputer Science ApplicationsEducationNuclear physicsAstrohiukkasfysiikkaAir showerData recordingAstroparticle physics
researchProduct

The next-generation liquid-scintillator neutrino observatory LENA

2012

We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the …

Neutrino detectors; Liquid-scintillator detectors; Low-energy neutrinos; Proton decay; Longbaseline neutrino beamsParticle physicsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaLongbaseline neutrino beamsFOS: Physical sciencesLow-energy neutrinos7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNONuclear physicsLiquid-scintillator detectorsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrino detectorsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsBorexinoPhysics010308 nuclear & particles physicsFísicaAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Proton decaySolar neutrino problem[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Journal of High Energy Physics

2014

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics - Instrumentation and DetectorsNeutrino Detectors and TelescopeFOS: Physical sciencesCHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)ExperimentDistortion0103 physical sciencesEnergy spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsMixing (physics)PhysicsNeutrino Detectors and Telescopes010308 nuclear & particles physicsOscillationPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorFunction (mathematics)Instrumentation and Detectors (physics.ins-det)OscillationNeutrinoInstrumentation and Detectors
researchProduct

Performance of tracking stations of the underground cosmic-ray detector array EMMA

2018

Abstract The new cosmic-ray experiment EMMA operates at the depth of 75 m (50 GeV cutoff energy for vertical muons; 210 m.w.e.) in the Pyhasalmi mine, Finland. The underground infrastructure consists of a network of eleven stations equipped with multi-layer, position-sensitive detectors. EMMA is designed for cosmic-ray composition studies around the energy range of the knee, i.e., for primary particles with energies between 1 and 10 PeV. In order to yield significant new results EMMA must be able to record data in the full configuration for about three years. The key to the success of the experiment is the performance of its tracking stations. In this paper we describe the layout of EMMA an…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenatutkimuslaitteetHigh-energy muonsCosmic rayScintillatorTracking (particle physics)01 natural sciencesOpticscosmic rays0103 physical sciencesAngular resolutiondrift chambersUnderground experimentCosmic rays010303 astronomy & astrophysicsImage resolutionPhysicsMuonDrift chambersta114010308 nuclear & particles physicsbusiness.industryDetectorAstronomy and Astrophysicshigh-energy muonsilmaisimetunderground experimentScintillation counterPlastic scintillation detectorsHigh Energy Physics::Experimentbusinesskosminen säteilyMuon trackingmuon trackingplastic scintillation detectorsAstroparticle Physics
researchProduct

Precision Muon Reconstruction in Double Chooz

2014

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a thro…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesSTRIPSDouble Chooz; Muon reconstruction; Neutrino detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]CHOOZScintillatorHigh Energy Physics - Experimentlaw.inventionNONuclear physicsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionPhysicsMuonDetectorReconstruction algorithmInstrumentation and Detectors (physics.ins-det)Double ChoozNeutrino detectorPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentMuon reconstruction
researchProduct

Measuring the14C content in liquid scintillators

2016

We are going to perform a series of measurements where the 14C/12 C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10-18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyhasalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyhasalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 1…

Nuclear physicsPhysicsHistoryNeutrino detectorObservatoryMeasuring instrumentScintillatorNeutrinoConcentration ratioParticle detectorBorexinoComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Muon capture on light isotopes measured with the Double Chooz detector

2016

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\time…

PhysicsSemileptonic decayParticle physicseducation.field_of_studyMuon010308 nuclear & particles physicsPopulationneutrino physic01 natural sciencesMuon captureNuclear physics13. Climate action0103 physical sciencesHigh Energy Physics::ExperimentNeutronProduction (computer science)Neutrino010306 general physicsGround stateeducation
researchProduct

Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine

2020

Abstract High energy particles reaching the Earth’s atmosphere are known as cosmic rays. As a result of interactions with nuclei of air molecules, cosmic rays induce showers of secondary particles, which can be divided into 3 components: electromagnetic, hadronic and muonic components. The Experiment with Multi Muon Array (EMMA), located at the depth of 75 m in the Pyhäsalmi mine in Finland, investigates the muonic component of the Extensive Air Showers (EAS) to deduce the direction, energy, and the mass of the primary cosmic ray particles. In this paper we give a concise description and methodology used by EMMA followed by a brief review of the C14 experiment. Finally, we review the feasib…

ғарыш сәулелеріPhysics::Instrumentation and DetectorsastrofysiikkaAstrophysics::High Energy Astrophysical PhenomenaBoreholekneeOcean EngineeringCosmic rayhiukkasfysiikkaSpectral lineAtmosphereNuclear physicsnuclear and elementary particle physicscosmic rayshigh-energy muonжоғары энергиялы мюонPhysicsтізе аймағыtheoretical physicsRange (particle radiation)Muonastrophysicsкең ауқымды нөсер (КАН)Neutrino detectorilmaisimetExtensive Air Shower (EAS)EMMANeutrinokosminen säteily
researchProduct

Can EMMA solve the puzzle of the knee?

2011

Abstract The knee is a change in the slope of the cosmic ray spectrum at approximate energy of 3 PeV. There are multiple competing models for the knee giving conflicting predictions about this change for different masses of the primary particle. Accurate mass measurements of cosmic rays spectra around 3 PeV would be able to exclude some of these models. Cosmic-ray experiment EMMA uses a new method for studying the composition of cosmic rays at the knee area. It is able to determine the multiplicity, the lateral distribution, and the arrival direction of incoming muons produced early in the shower evolution on an event-by-event basis and deduce from these measurements the mass and the energy…

PhysicsNuclear and High Energy PhysicsHigh energyMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsCosmic rayKnee regionWater equivalentSpectral lineNuclear physicsOverburdenIndependent data
researchProduct

Background and muon counting rates in underground muon measurements with a plastic scintillator counter based on a wavelength shifting fibre and a mu…

2010

AbstractIn this short note we present results of background measurements carried out with polystyrene based cast plastic 12.0×12.0×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ∼0.37 of a minimum ionizing particle is approximately 1.3 Hz.

PhysicsMuonPixelbusiness.industryPhysics::Instrumentation and DetectorsPhysicsQC1-999radioactivity backgroundGeneral Physics and AstronomyCosmic rayScintillatorAvalanche photodiodeplastic scintillatormulti-pixel avalanche photodiodeWavelengthOpticsmuonOptoelectronicsGeiger mode avalanche photodiodebusinessCounting ratecosmic rayOpen Physics
researchProduct

High-multiplicity muon events observed with EMMA array

2020

Abstract High-multiplicity data, collected with a segmented scintillator array of the cosmic-ray experiment EMMA (Experiment with Multi-Muon Array), is presented for the first time. The measurements were done at the depth of 75 meters (210 m.w.e.) in the Pyhäsalmi mine in Finland. EMMA uses two types of detectors: drift chambers and plastic scintillation detectors. The presented data were acquired over the period between December, 2015 and April, 2018 using 128-800 plastic scintillator pixels probing the fiducial area of ˜100 m2. The results are being interpreted in terms of CORSIKA simulations. Several events with densities in excess of 10 muons per m2 were observed. At the next stage of t…

PhysicsNuclear physicsHistoryMuonPhysics::Instrumentation and DetectorsastrofysiikkahiukkasfysiikkaHigh multiplicitykosminen säteilyComputer Science ApplicationsEducation
researchProduct

Cosmic-ray muon flux at Canfranc Underground Laboratory

2019

Residual flux and angular distribution of high-energy cosmic muons have been measured in two underground locations at the Canfranc Underground Laboratory (LSC) using a dedicated Muon Monitor. The instrument consists of three layers of fast scintillation detector modules operating as 352 independent pixels. The monitor has flux-defining area of 1 m${}^{2}$, covers all azimuth angles, and zenith angles up to $80^\circ$. The measured integrated muon flux is $(5.26 \pm 0.21) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in the Hall A of the LAB2400 and $(4.29 \pm 0.17) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in LAB2500. The angular dependence is consistent with the known profile and rock density of the sur…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical sciencesFluxlcsh:AstrophysicsCosmic rayApplied Physics (physics.app-ph)hiukkasfysiikkaScintillator01 natural sciencesNuclear physicslcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010303 astronomy & astrophysicsEngineering (miscellaneous)ZenithPhysicsMuon010308 nuclear & particles physicsCanfranc Underground LaboratoryPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)Azimuthilmaisimethigh-energy cosmic muonsMuon fluxlcsh:QC770-798High Energy Physics::Experimentkosminen säteily
researchProduct

Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment

2009

The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.

PhysicsNuclear and High Energy PhysicsOptical fiberPhysics - Instrumentation and DetectorsPixelbusiness.industryPhysics::Instrumentation and DetectorsAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesPhysics::Physics EducationCosmic rayInstrumentation and Detectors (physics.ins-det)ScintillatorAvalanche photodiodePhotodiodelaw.inventionWavelengthOpticslawGeiger counterOptoelectronicsbusinessInstrumentation
researchProduct

Calculation of total muon flux observed by Muon Monitor experiment

2017

An approach to calculate the flux of cosmicgenic muons detected by Muon Monitor experiment in lab LAB2400 of the Underground Laboratory in Canfranc (LSC) is described. The measuring apparatus consists of three layers of SC16 scintillation matrix detectors. The hardware function of the detector assembly was determined using computer simulation. Obtained value of the total muon ux turned out to be equal to (4.35 ± 0.2) × 10−3 m −2 s −1.

Nuclear physicsPhysicsHistoryScintillationMuonPhysics::Instrumentation and DetectorsMuon fluxDetectorUnderground laboratoryFluxHigh Energy Physics::ExperimentComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Underground multi-muon experiment EMMA

2011

EMMA is a new experiment designed for cosmic- ray composition studies around the knee energy operating at the shallow depth underground in the Pyh¨ asalmi mine, Fin- land. The array has sufficient coverage and resolution to de- termine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons on an event by event basis. Preliminary results on the muon multiplicity ex- tracted using one detector station of the array are presented.

Nuclear physicsPhysicsCOSMIC cancer databaseMuonPhysics and Astronomy (miscellaneous)Density distributionPhysics::Instrumentation and DetectorsDetectorHigh Energy Physics::ExperimentAstronomy and AstrophysicsAstrophysics and Space Sciences Transactions
researchProduct

EAS selection in the EMMA underground array

2013

The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed over all of the tracking detector area and even extending over to the satellite station are identified as EAS. The recorded multiplicity spectrum of the events is in general agreement with CORSIKA EAS simulation and demonstrates the array’s capability of EAS detection. peerReviewed

AstrohiukkasfysiikkaPhysicsNuclear physicsHistoryDetectorAstroparticle physicsComputer Science ApplicationsEducationTest dataRemote sensingJournal of Physics: Conference Series
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

A New Low Background Laboratory in the Pyhäsalmi Mine : Towards 14C free liquid scintillator for low energy neutrino experiments

2017

A new low background laboratory in Pyhäsalmi mine in the Central Finland has been put into operation in the beginning of 2017. The laboratory operates at the depth of 1436 m (~4100 meters of water equivalent). In this paper, we present description of the laboratory’s existing facility and background conditions. In the laboratory, a series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring the 14C/12C ratio smaller than 10-18 . peerReviewed

Low energyta114research equipmentcosmic radiationNuclear engineeringtutkimuslaitteetneutriinotEnvironmental scienceneutrinosNeutrinoScintillatorWater equivalentkosminen säteily
researchProduct

Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects

2007

This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to…

PhysicsParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetectorActive detectionFOS: Physical sciencesAstronomy and AstrophysicsScintillator01 natural sciencesCritical discussionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesLiquid argonLiquid basedHigh Energy Physics::Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrino010306 general physicsParticle Physics - PhenomenologyJournal of Cosmology and Astroparticle Physics
researchProduct

Muon multiplicities measured using an underground cosmic-ray array

2016

EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or similar to 1 - 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations similar to 15 m(2) each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

HistoryPhysics::Instrumentation and Detectorsmuonscosmic-raysCosmic rayEXTENSIVE AIR-SHOWERS01 natural sciencesEducationunderground detectorsNuclear physicsEVENTSData acquisition0103 physical sciencesDetector array010303 astronomy & astrophysicsDETECTORPhysicsMuon010308 nuclear & particles physicsDetectorMultiplicity (mathematics)LEPComputer Science ApplicationsDensity distributionKASCADE-GRANDEHigh Energy Physics::ExperimentEvent (particle physics)EMMA (Experiment with Multi-Muon Array)
researchProduct

Measuring the 14C content in liquid scintillators

2016

We are going to perform a series of measurements where the 14C/12C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10−18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyh¨asalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyh¨asalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic …

low-energy neutrino detectionhiililiquid scintillatorsisotope ratio
researchProduct

Towards 14C-free liquid scintillator

2017

A series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring concentrations smaller than 10−18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia, and in the new Callio Lab in the Pyhäsalmi mine, Finland. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C concentration in the liquid is extremely low. In the Borexino CTF detector the concentration of 2 × 10−18 has been achieved being the lowest value ever measured. In principle, the older the oil or gas source that…

low-energy neutrino detectionPhysics::Instrumentation and Detectorsilmaisimethiilineutriinotliquid scintillatorsisotope ratio
researchProduct