0000000000077053

AUTHOR

P. M. Buhl

showing 6 related works from this author

Mechanism for ultrafast electric-field driven skyrmion nucleation

2021

We show how a Dzyaloshinskii-Moriya interaction can be generated in an ultrathin metal film from a femtosecond pulse in electric field. This interaction does not require structural inversion-symmetry breaking, and its amplitude can be tuned depending on the amplitude of the field. We perform first-principles calculations to estimate the strength of the field-induced magnetoelectric coupling for ferromagnetic Fe, Co, and Ni, and antiferromagnetic Mn, as well as FePt and MnPt alloys. Last, using atomistic simulations, we demonstrate how an isolated antiferromagnetic skyrmion can be coherently nucleated from the collinear background by an ultrashort pulse in electric field on a hundred-femtose…

Materials scienceCondensed matter physicsField (physics)SkyrmionNucleationPhysics::Optics02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesCondensed Matter::Materials ScienceAmplitudeFerromagnetismElectric field0103 physical sciencesAntiferromagnetismddc:530Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyUltrashort pulsePhysical Review B
researchProduct

Magnonic Weyl states in Cu2OSeO3

2019

Physical review research 2(1), 013063 (2020). doi:10.1103/PhysRevResearch.2.013063

Condensed Matter - Other Condensed MatterPhysicsCondensed Matter - Strongly Correlated ElectronsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electronsddc:530530Other Condensed Matter (cond-mat.other)
researchProduct

Dzyaloshinskii-Moriya interaction induced by an ultrashort electromagnetic pulse: Application to coherent (anti)ferromagnetic skyrmion nucleation

2020

We show how a Dzyaloshinskii-Moriya interaction can be generated in an ultrathin metal film from the induced internal electric field created by an ultrashort electromagnetic pulse. This interaction does not require structural inversion-symmetry breaking, and its amplitude can be tuned depending on the amplitude of the field. We perform first-principles calculations to estimate the strength of the field-induced magnetoelectric coupling for ferromagnetic Fe, Co, and Ni, and antiferromagnetic Mn, as well as FePt alloys. Last, using atomistic simulations, we demonstrate how an isolated antiferromagnetic skyrmion can be coherently nucleated from the collinear background by an ultrashort pulse in…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Exchange Splitting of a Hybrid Surface State and Ferromagnetic Order in a 2D Surface Alloy

2019

Surface alloys are highly flexible materials for tailoring the spin-dependent properties of surfaces. Here, we study the spin-dependent band structure of a DyAg$_2$ surface alloy formed on an Ag(111) crystal. We find a significant exchange spin-splitting of the localized Dy 4f states pointing to a ferromagnetic coupling between the localized Dy moments at $40\,$K. The magnetic coupling between these moments is mediated by an indirect, RKKY-like exchange coupling via the spin-polarized electrons of the hole-like Dy-Ag hybrid surface state.

Physics::Fluid DynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Mixed topology ring states for Hall effect and orbital magnetism in skyrmions of Weyl semimetals

2020

Skyrmion lattices as a novel type of chiral spin states are attracting increasing attention, owing to their peculiar properties stemming from real-space topological properties. At the same time, the properties of magnetic Weyl semimetals with complex $k$-space topology are moving into the focus of research in spintronics. We consider the Hall transport properties and orbital magnetism of skyrmion lattices imprinted in topological semimetals, by employing a minimal model of a 2D mixed Weyl semimetal which, as a function of the magnetization direction, exhibits two Chern insulator phases separated by a Weyl state for an an in-plane magnetization direction. We find that while the orbital magne…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetismSkyrmionWeyl semimetalFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyTopologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetizationMAJORANAFerromagnetismHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530010306 general physics0210 nano-technologyOrbital magnetizationPhysical Review B
researchProduct

Distinct magnetotransport and orbital fingerprints of chiral bobbers

2019

While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films $-$ a chiral bobber $-$ has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the …

PhysicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTheoretical physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesParticleddc:530010306 general physics0210 nano-technologySpin (physics)Topology (chemistry)
researchProduct