0000000000082158
AUTHOR
K. Starosta
Transition probabilities in negative parity bands of the 119I nucleus
Abstract Lifetimes in four negative-parity bands of 119 I were measured using DSAM and RDM. 119 I nuclei were produced in the 109 Ag( 13 C,3n) reaction, γγ coincidences were collected using the NORDBALL array. RDDSA — a new method of RDM analysis — is described. This method allowed for the self-calibration of stopping power. From 31 measured lifetimes, 39 values of B (E2) were established. Calculations in the frame of the Core Quasi Particle Coupling (CQPC) model were focused on the problem of susceptibility of the nucleus to γ -deformation. It was established that nonaxial quadrupole deformation of 119 I plays on important role. The Wilets–Jean model of a γ -soft nucleus describes the 119 …
New developments on the recoil distance doppler-shift method
Absolute transition probabilities are fundamental observables for nuclear structure. The recoil-distance-Doppler-shift (RDDS) technique, also called plunger technique, is a well established tool for the determination of these important experimental quantities via the measurement of lifetimes of excited nuclear states. Nowadays nuclear structure investigations are concentrated on exotic nuclei which are often produced with extremely small cross sections or with very low beam intensities. In order to use the RDDS technique also for the investigation of very exotic nuclei this method has to be adapted to the specific needs of these special reactions. This article gives an overview on recent RD…
Isospin symmetry in B(E2) values: Coulomb excitation study of Mg21
The Tz=−32 nucleus 21Mg has been studied by Coulomb excitation on 196Pt and 110Pd targets. A 205.6(1)-keV γ-ray transition resulting from the Coulomb excitation of the 52+ ground state to the first excited 12+ state in 21Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the 12+ state yield an adopted value of B(E2;52+→12+)=13.3(4) W.u. A new excited state at 1672(1) keV with tentative 92+ assignment was also identified in 21Mg. This work demonstrates a large difference in the B(E2;52+→12+) value between T=32, A=21 mirror nuclei. The difference is investigated in the shell-model framework employing both i…
γ-ray spectroscopy of neutron-deficientTe110. II. High-spin smooth-terminating structures
High-spin states have been populated in Te-110(52) via Ni-58(Ni-58,alpha 2p gamma) reactions at 240 and 250 MeV. The Gammasphere gamma-ray spectrometer was used in conjunction with the Microball charged-particle detector. The high-spin (I>30) collective level scheme of Te-110, up to similar to 45h, is discussed in this paper. Four new decoupled (Delta I=2) high-spin structures have been observed for the first time, together with two strongly coupled (Delta I=1) bands. These bands all show the characteristics of smooth band termination, and are discussed within the framework of the cranked Nilsson-Strutinsky approach.
Isospin symmetry in $B(E2)$ values: Coulomb excitation study of ${}^{21}$Mg
The $T_z$~=~$-\frac{3}{2}$ nucleus ${}^{21}$Mg has been studied by Coulomb excitation on ${}^{196}$Pt and ${}^{110}$Pd targets. A 205.6(1)-keV $\gamma$-ray transition resulting from the Coulomb excitation of the $\frac{5}{2}^+$ ground state to the first excited $\frac{1}{2}^+$ state in ${}^{21}$Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the $\frac{1}{2}^+$ state yield an adopted value of $B(E2;\frac{5}{2}^+\rightarrow\frac{1}{2}^+)$~=~13.3(4)~W.u. A new excited state at 1672(1)~keV with tentative $\frac{9}{2}^+$ assignment was also identified in ${}^{21}$Mg. This work demonstrates large difference…
Coexisting structures in 119I
Abstract High-spin structures of 119 I have been studied by using 13 C and 15 N induced reactions. In all, fifteen ΔI = 1 or 2 bands belonging to 119 I were found. No evidence was found for bands with collective oblate shape, instead, all the observed rotational bands were interpreted to possess a collective prolate shape. A rich tapestry of noncollective states of both negative and positive parity was observed. Based on TRS calculations various configurations at β 2 ≈ 0.17 and γ = 60° were assigned to these states.
Stability of chiral geometry in the odd–odd Rh isotopes: spectroscopy of 106Rh
International audience; 136 P. Joshi et al. / Physics Letters B 595 (2004) 135–142AbstractThe nucleus 106Rh was populated using the reaction 96Zr(13C, p2n) at a beam energy of 51 MeV. γ -ray transitions wereidentified using the EUROBALL-IV γ -ray spectrometer and the DIAMANT charged particle array. The yrast band, which isbased upon a πg−19/2 ⊗ νh11/2 configuration, has been extended to I π = (22−). A new I = 1 band has been identified whichresides ∼ 300 keV above the yrast band. Core–quasiparticle coupling model calculations show reasonably good agreement withthe data. The properties of the two pairs of strongly coupled bands are consistent with a chiral interpretation for these states. 2…
Improved measurement of the 02+→01+ E0 transition strength for 72Se using the SPICE spectrometer
The selenium isotopes lie at the heart of a tumultuous region of the nuclear chart where shape coexistence effects grapple with neutron-proton pairing correlations, triaxiality, and the impending proton drip line. In this work, a study of 72Se by internal conversion electron and γ-ray spectroscopy was undertaken with the SPICE and TIGRESS arrays. New measurements of the branching ratio and lifetime of the 02+ state were performed, yielding a determination of ρ2(E0;02+→01+)=29(3) milliunits. Two-state mixing calculations were performed that highlighted the importance of interpretation of such E0 strength values in the context of shape coexistence. peerReviewed
Magnetic properties of smooth terminating dipole bands in 110,112Te
Three strongly coupled sequences have been established in Te-110,Te-112 up to high spins. They are interpreted in terms of deformed structures built on proton 1-particle-1-hole excitations that reach termination at I similar to 40h. This is the first observation of smooth terminating dipole structures in this mass region. Lifetime measurements have allowed the extraction of experimental B(M 1; 1 -> I - 1) and B(E2; I -> I - 2) reduced transition rates for one of the dipole bands in Te-110. The results support the deformed interpretation. (c) 2006 Elsevier B.V. All rights reserved.
Smooth terminating bands inTe112: Particle-hole induced collectivity
The Gammasphere spectrometer, in conjunction with the Microball charged-particle array, was used to investigate high-spin states in Te-112 via Ni-58(Ni-58, 4p gamma) reactions at 240 and 250 MeV. Several smooth terminating bands were established, and lifetime measurements were performed for the strongest one using the Doppler-shift attenuation method. Results obtained in the spin range 18-32h yield a transition quadrupole moment of 4.0 +/- 0.5eb, which corresponds to a quadrupole deformation epsilon(2)=0.26 +/- 0.03; this value is significantly larger than the ground-state deformation of tellurium isotopes. It was also possible to extract a transition quadrupole moment for the yrast band in…
Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of 145Tm
Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with…
Experimental evidence for chirality in the odd-A 105Rh
Abstract High-spin states in 105 Rh were populated by the 96 Zr( 13 C, p3n) reaction at beam energies of 51 and 58 MeV, and studied using the EUROBALL IV γ -ray spectrometer and the DIAMANT charged particle array. A pair of nearly degenerate Δ I = 1 three-quasiparticle bands with the same spins and parity have been observed. Comparison of the experimental results with tilted axis cranking calculations confirms the chiral character of the two bands, while arguments based on the excitation of particles within the π g 9 / 2 ν ( h 11 / 2 ) 2 configuration of the yrast band and comparison with the previously observed γ band exclude the other possible interpretations. This is the first experiment…