0000000000082629
AUTHOR
Boris F. Minaev
Polymorph acceptor-based triads with photoinduced TADF for UV sensing
Abstract In contrast to many donor–acceptor type organic luminophores exhibiting thermally activated delayed fluorescence (TADF), two deep blue TADF emitters designed in this work contain only typical electron accepting moieties with different electron accepting abilities. Derivatives of benzophenone and diphenylsulfone substituted with phenothiazine-5,5-dioxide donor moieties were synthesized and studied. In addition to the TADF, green to blue emission color switching and strong fluorescence intensity enhancement by more than 60 times was detected for THF solution of the derivative of phenothiazine-5,5-dioxide and benzophenone under increase of UV excitation dose. We proved by a variety of…
Ab initio calculations of zero-field splitting parameters in linear polyacenes
Abstract The results of ab initio calculations of zero-field splitting (ZFS) parameters are presented for the linear polyacenes from benzene to pentacene. We show how the electron spin–spin (SS) parameters can be efficiently obtained from restricted high-spin open-shell wave functions (ROHF), and present calculations of these, comparing with the results of a recent multi-configurational self-consistent field approach. The SS parameters are obtained from electron SS coupling strengths evaluated as expectation values over the wave functions and from state-to-state spin–orbit (SO) interactions. The results for the two lowest triplet states of naphthalene demonstrate that excellent values can b…
Flexible diphenylsulfone versus rigid dibenzothiophene-dioxide as acceptor moieties in donor-acceptor-donor TADF emitters for highly efficient OLEDs
DG acknowledges funding from the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/177 . This research is/was funded by the European Regional Development Fund according to the supported activity ‘ Research Projects Implemented by World-class Researcher Groups ’ under Measure No. 01.2.2-LMT-K-718 . Ministry of Science and Technology (MOST), Taiwan , Grant No. MOST 106-2923-E-155-002-MY3 . This work was also supported by the Ministry of Education and Science of Ukraine (projects no. 0117U003908 and 0118U003862 ), and by the Olle Engkvist Byggmästare foundation (contract No. 189-0223 ). The quantum-chemical calculations were performed with computational resources provided by the High Performance Comp…