0000000000082796

AUTHOR

Barbara Trzebicka

Polyether Core-Shell Cylinder-Polymerization of Polyglycidol Macromonomers

The synthesis and polymerization of macromonomers containing a polymerizable styrene head group and a tail of ethylene oxide derivatives of different character were investigated. The synthesis of macromonomers was based on living anionic polymerization of oxiranes. Two monomers were used: 1-ethoxyethyl glycidyl ether (glycidol acetal), which after hydrolysis forms hydrophilic glycidol blocks and glycidyl phenyl ether forming hydrophobic blocks. Polymerizable double bonds were introduced by terminating the living chain with p-(chloromethyl)styrene. The radical polymerization of the macromonomers was carried out in water with addition of a non-polar solvent (benzene) and AIBN as initiator. Co…

research product

Star-Like Polymers of tert -Butyl Acrylate via Controlled Radical Polymerization - Synthesis and Properties

Summary: Star polymers with different numbers and lengths of poly(tert-butyl acrylate) arms were obtained by the core-first method via atom transfer and iodine mediated radical polymerization. Multifunctional initiators with different numbers of initiating groups (from 3 to 28) were used to initiate the polymerization of tert-butyl acrylate, yielding stars with different numbers of arms. The structures of the stars were characterized by NMR and gel permeation chromatography with refractive index, multiangle laser light scattering and viscosimetric detectors.

research product

Core-shell polyacrylate and polystyrene-block-polyacrylate stars

The polymerization of p-(iodomethyl)styrene (PIMS) yields well-defined branched polymers with reactive iodomethyl groups. The branched poly[p-(iodomethyl)styrene] was used as the transfer agent in the iodine mediated radical polymerization of vinyl monomers. The polymerization proceeds in a controlled way and yields polystyrene and poly(t-butyl acrylate) star polymers with reactive groups at the end of their arms. Polymers so obtained were also used to prepare stars with block copolymer arms: polystyrene-block-poly(t-butyl acrylate). The characterization of star structures was performed by NMR and gel permeation chromatography with absolute molar mass detection (MALLS). Preliminary characte…

research product

Loading of polymer nanocarriers: Factors, mechanisms and applications

Abstract The progress in synthetic polymer chemistry has allowed the precise design of hybrid and multifunctional colloidal particles, which differ in type, size and shape, thus enhancing their possible applications as target-oriented carriers of low and high molar mass active species. This survey discusses the basic principles and factors, associated with the process of loading of polymeric nanoparticles. For the purpose of this review, the polymeric nano-carriers are divided into five most studied types: micelles, nanogels, capsules (incl. vesicles), dendrimers, and hybrid nanoparticles with porous cores. Factors influencing the loading are described and their importance discussed. An imp…

research product

Synthesis and thermoresponsive properties of four arm, amphiphilic poly(tert-butyl-glycidylether)-block-polyglycidol stars

Abstract A series of four arm stars with copolymer arms composed of poly(tert-butyl-glycidylether)-b-polyglycidol were prepared using a multi-step process based on anionic ring-opening polymerization. Control of the length of the arms and the number of functional (hydroxyl) reactive groups was achieved by anionic polymerization. Stars with molar masses up to 12200 g/mol were prepared. The amphiphilic character of the star structure was varied using different polyglycidol block lengths. The star structure and molar mass of the obtained stars were characterized by SEC–MALLS and NMR spectroscopy. The temperature behavior of an aqueous solution of the obtained polymers was also investigated. Th…

research product

The influence of hydrophobic substitution on self-association of poly(ethylene oxide)-b-poly(n-alkyl glycidyl carbamate)s-b-poly(ethylene oxide) triblock copolymers in aqueous media

Abstract A series of amphiphilic poly(ethylene oxide)-b-poly(n-alkyl glycidyl carbamate)s-b-poly(ethylene oxide) triblock copolymers were synthesized by reaction between poly(ethylene oxide)-b-polyglycidol-b-poly(ethylene oxide) precursor copolymer and four n-alkyl isocyanates: ethyl, propyl, butyl and pentyl. After dissolution in water at room temperature the copolymers spontaneously form micelles. The critical micellization concentrations were determined by UV–VIS spectroscopy. The dimensions of the micelles, the aggregation numbers, and in some cases the micellar shape were determined by dynamic and static light scattering in a relatively broad temperature range. Special attention has be…

research product

Core‐shell nanoparticles with hyperbranched poly(arylene‐oxindole) interiors

Opracowano synteze wysoce rozgalezionego poli(aryleno-oksyndolu) na drodze reakcji polimeryzacji pochodnej 5-bromoizatyny, a nastepnie modyfikacji terminalnych jednostek izatynowych. Tak przygotowany polimerowy rdzen, charakteryzujący sie stopniem rozgalezienia 100 %, byl substratem do rodnikowej polimeryzacji z przeniesieniem atomu (z ang. ATRP) w reakcji z akrylanem tert-butylu. Otrzymane kopolimery zawierające hydrofobowy rdzen i alkilowe lancuchy zakonczone wolnymi grupami karboksylowymi tworzą sferyczne nanocząstki. Przedstawiono wstepne wyniki badan dotyczących ich wlaściwości fizykochemicznych oraz potencjalnych zastosowan.

research product

High molecular arborescent polyoxyethylene with hydroxyl containing shell

Abstract Arborescent polyoxyethylene of high molar mass (2×10 5  g/mol) and narrow molar mass distribution was synthesized in a three-stage process. In the first stage a triblock copolymer of ethylene oxide (central block, DP ca. 90) and 2,3-epoxypropanol-1 (short flanking blocks, DP ca. 5) was synthesized. The potassium alcoholate derived from this copolymer was used to initiate the polymerization of ethylene oxide and the subsequent addition of protected glycidol (1-etoxyethyl glycidyl ether). After deprotection the short polyglycidol blocks were used as branching units for the next generation. Repeated step by step process leads to the ‘pom-pom like’ branched polyoxyethylene macromolecul…

research product

Solution behavior of 4-arm poly(tert-butyl acrylate) star polymers

Abstract This paper reports the synthesis of 4-arm poly( tert -butyl acrylate) stars of different molar masses up to 10 6  g/mol by the “core-first” method using ATRP. All obtained stars have a monomodal and narrow molar-mass distribution ( The dilute-solution properties of these star polymers were investigated in good solvents (tetrahydrofuran and acetone). Gel permeation chromatography and dynamic and static light scattering were used to measure the hydrodynamic properties including intrinsic viscosity [ η ], radius of gyration R g , hydrodynamic radius R h , second virial coefficient A 2 and diffusion coefficient D 0 . These data were used to establish relationships between these paramet…

research product

Photodegradation of polyglycidol in aqueous solutions exposed to UV irradiation

The photodegradation of polyglycidol in aqueous solution with UV wavelength of 254 nm was investigated. The experiments were carried out in air at a constant temperature and the photodegradation of polyglycidol (PGl) was compared to that of poly(ethylene oxide) (PEO), the most widely studied polyether. Size exclusion chromatography with multiangle light scattering detection (SEC-MALLS) was used to measure the changes in the molar masses and molar mass dispersities of polymers during degradation. The molar mass of PGl decreased dramatically during the first period of UV irradiation and then gradually approached a limiting value of 17,000 g/mol, regardless of the initial polymer concentration…

research product

Synthesis and characterization of well-defined poly(tert-butyl acrylate) star polymers

Abstract Star polymers with different numbers and lengths of poly(tert-butyl acrylate) (PTBA) arms were obtained via atom transfer radical polymerization. Aliphatic alcohols with different number of hydroxyl groups varying from 3 to 6 and calix[4]arenes based on pyrogallol with 12 and 16 phenol groups were transformed to bromoester derivatives to prepare multifunctional ATRP initiators used as the cores of the stars. The star polymers were characterized by GPC with refractive index, multiangle laser light scattering and viscosimetric detectors. The molar masses of the stars reached 70,000 g/mol and the molar mass dispersities did not exceed 1.2. To elucidate the compact structure of the sta…

research product

Amphiphilic Polyethers of Controlled Chain Architecture

The amphiphilic polymers, polymers which contain in their macromolecules both hydrophilic and hydrophobic units1, are the base for valuable materials due to their diversified interaction with liquids. So they may act as emulsifiers, compatibilizers, “smart” materials (responding to external stimuli)2 and many others. In order to control their properties, the hydrophilic — hydrophobic balance in the macromolecules has to be controlled. This balance depends not only upon the constitution of the chain repeating units, but also upon the art of their distribution in the chains (copolymers of controlled unit sequences), the chain topology, the size of the chains and many others. So a careful engi…

research product

Synthesis of polyvinyl acetate-graft-poly-2-oxazolines

Poly(vinyl acetate-co-vinyl chloroformate) (1) was synthesized via phosgenation of poly(vinyl acetate-co-vinyl alcohol). It was shown that (1) is capable of initiating the polymerization of 2-phenyl-2-oxazoline and 2-methyl-2-oxazoline, when the counter ion is exchanged using potassium iodide. Polyvinyl acetate-graft-poly-2-phenyl-2-oxazoline and polyvinyl acetate-graft-poly-2-methyl-2-oxazoline are obtained in the grafting reaction.

research product

Star poly(2-ethyl-2-oxazoline)s-synthesis and thermosensitivity

A series of star-shaped poly(2-ethyl-2-oxazoline)s was prepared by cationic polymerization. The polymerization was initiated by dipentaerythrityl hexakis(4-nitrobenzene sulfonate) and a tosylated hyperbranched polymer of glycidol. The polymerization proceeded in a controlled manner. The star structure of the products was determined by nuclear magnetic resonance. The molar mass distributions that were measured by gel permeation chromatography with multiangle laser light scattering were narrow, and the experimental values of the molar masses were close to those predicted. The very compact structure of the polymers obtained (compared with the linear counterparts) confirmed the star formation. …

research product