0000000000083334
AUTHOR
Adrian Brückner
Table S3 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Figure S3 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Figure S1 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
De novo biosynthesis of simple aromatic compounds by an arthropod ( Archegozetes longisetosus )
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic …
Table S4 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Unveiling community patterns and trophic niches of tropical and temperate ants using an integrative framework of field data, stable isotopes and fatty acids.
Background: The use and partitioning of trophic resources is a central aspect of community function. On the ground of tropical forests, dozens of ant species may be found together and ecological mechanisms should act to allow such coexistence. One hypothesis states that niche specialization is higher in the tropics, compared to temperate regions. However, trophic niches of most species are virtually unknown. Several techniques might be combined to study trophic niche, such as field observations, fatty acid analysis (FAA) and stable isotope analysis (SIA). In this work, we combine these three techniques to unveil partitioning of trophic resources in a tropical and a temperate community. We d…
Figure S4 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Figure S5 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Table S2 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Figure S2 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…
Table S1 from De novo biosynthesis of simple aromatic compounds by an arthropod (Archegozetes longisetosus)
The ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route—the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms. The few studies purportedly showing de novo biosynthesis via the polyketide synthase (PKS) pathway failed to exclude endosymbiotic bacteria, so their results are inconclusive. We investigated the biosynthesis of aromatic c…