0000000000083884
AUTHOR
Karl Walter Bock
Formation of mono- and diglucuronides and other glycosides of benzo(a)pyrene-3,6-quinol by V79 cell-expressed human phenol UDP-glucuronosyltransferases of the UGT1 gene complex
Glucuronidation of quinols of polycyclic aromatic hydrocarbons (PAHs) represents an important detoxication pathway preventing toxic quinone/quinol redox cycles. Therefore, mono- and diglucuronide formation of benzo(a)pyrene-3,6-quinol was investigated and compared to that of structurally related 3,6-dihydroxychrysene and simple phenols (1-naphthol and 4-methylumbelliferone) using V79 cell-expressed human UGT1.6 (= P1) and human UGT1.7 (= P4). Properties of human UGT1.6 were compared to those of the rat ortholog. Cofactors related to UDP-glucuronic acid such as UDP-galacturonic acid and UDP-glucose were also studied. It was found that rat and human UGT1.6 and human UGT1.7 catalyse monoglucur…
Mono- and diglucuronide formation from benzo[a]pyrene and chrysene diphenols by AHH-1 cell-expressed UDP-glucuronosyltransferase UGT1A7
Polycyclic aromatic hydrocarbon (PAH)-type compounds induce at least two rat UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT1A7. Among the glucuronidation reactions of PAH metabolites studied, mono- and diglucuronide formation of benzo[a]pyrene and chrysene-3,6-diphenol showed the highest induction factors in rat liver microsomes. Availability of AHH-1 cells stably expressing UGT1A7 allowed us to study whether this PAH-inducible isoform could catalyze benzo[a]pyrene and chrysene-3,6-diphenol glucuronidation. It was found that UGT1A7 indeed catalyzed mono- and diglucuronide formation of both benzo[a]pyrene and chrysene 3,6-diphenols. V79 cell-expressed rat UGT1A6 also catalyzed these re…
Drug-metabolizing enzyme activities in freshly isolated oval cells and in an established oval cell line from carcinogen-fed rats
The activities of several different phase I and phase II drug-metabolizing enzymes were measured in freshly isolated oval cells from rats fed a choline-deficient/DL-ethionine-supplemented diet for 6 weeks and also in vitro in the established oval cell line OC/CDE 6. No cytochrome P450 was spectrophotometrically measurable in both preparations and two cytochrome P450-dependent monoxygenase activities, aminopyrine N-demethylase and ethoxyresorufin O-deethylase, could not be detected in the oval cells of both sources. However, cytosolic glutathione transferase, microsomal epoxide hydrolase and UDP-glucuronosyltransferase activities were clearly measurable in oval cells. Similar enzyme activiti…