0000000000086390

AUTHOR

Glen A. Lichtwark

Effects of muscle activation on shear between human soleus and gastrocnemius muscles

Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both pass…

research product

Lower limb muscle moments and power during recovery from forward loss of balance in male and female single and multiple steppers

Abstract Background Studying recovery responses to loss of balance may help to explain why older adults are susceptible to falls. The purpose of the present study was to assess whether male and female older adults, that use a single or multiple step recovery strategy, differ in the proportion of lower limb strength used and power produced during the stepping phase of balance recovery. Methods Eighty-four community-dwelling older adults (47 men, 37 women) participated in the study. Isometric strength of the ankle, knee and hip joint flexors and extensors was assessed using a dynamometer. Loss of balance was induced by releasing participants from a static forward lean (4 trials at each of 3 f…

research product

Mechanisms of Adaptation from a Multiple to a Single Step Recovery Strategy following Repeated Exposure to Forward Loss of Balance in Older Adults

When released from an initial, static, forward lean angle and instructed to recover with a single step, some older adults are able to meet the task requirements, whereas others either stumble or fall. The purpose of the present study was to use the concept of margin of stability (MoS) to investigate balance recovery responses in the anterior-posterior direction exhibited by older single steppers, multiple steppers and those that are able to adapt from multiple to single steps following exposure to repeated forward loss of balance. One hundred and fifty-one healthy, community dwelling, older adults, aged 65-80 years, participated in the study. Participants performed four trials of the balanc…

research product

Decreased lower limb muscle recruitment contributes to the inability of older adults to recover with a single step following a forward loss of balance

In response to a balance disturbance, older individuals often require multiple steps to prevent a fall. Reliance on multiple steps to recover balance is predictive of a future fall, so studies should determine the mechanisms underlying differences between older adults who can and cannot recover balance with a single step. This study compared neural activation parameters of the major leg muscles during balance recovery from a sudden forward loss of balance in older individuals capable of recovering with a single step and those who required multiple steps to regain balance. Eighty-one healthy, community dwelling adults aged 70±3 participated. Loss of balance was induced by releasing participa…

research product

Understanding altered contractile properties in advanced age : insights from a systematic muscle modelling approach

Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simu…

research product

Doublet potentiation in the triceps surae is limited by series compliance and dynamic fascicle behavior.

Activation of skeletal muscle twice in quick succession results in nonlinear force summation (i.e., doublet potentiation). The force contributed by a second activation is typically of augmented amplitude, longer in duration, and generated at a greater rate. The purpose of this study was to examine force summation in a muscle attached to a compliant tendon, where considerable internal shortening occurs during a fixed-end contraction. The triceps surae of 21 ( Experiment 1) and 9 ( Experiment 2) young adults were maximally activated with doublet stimulation of different interstimulus intervals (ISIs) (5-100 ms) at several muscle lengths. Ultrasound images acquired from lateral gastrocnemius …

research product

The use of ultrasound to study muscle–tendon function in human posture and locomotion

Analysis of human movement has traditionally relied on measures such as kinematics, kinetics and electromyography. These measures provide valuable information about movement performance and make it possible to draw inferences about muscle and tendon function. Musculoskeletal models are also used frequently to examine the relationship between joint kinematics and muscle-tendon behaviour, and have provided important insights into both healthy and clinical gait. However, muscles interact with compliant tendons during movement, which complicates interpretation of muscle and tendon function based on external measures such as joint kinematics. Accordingly, methods have been developed that enable …

research product

Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults.

Background: a fall occurs when an individual experiences a loss of balance from which they are unable to recover. Assessment of balance recovery ability in older adults may therefore help to identify individuals at risk of falls. The purpose of this 12-month prospective study was to assess whether the ability to recover from a forward loss of balance with a single step across a range of lean magnitudes was predictive of falls. Methods: two hundred and one community-dwelling older adults, aged 65–90 years, underwent baseline testing of sensorimotor function and balance recovery ability followed by 12-month prospective falls evaluation. Balance recovery ability was defined by whether particip…

research product

Rise of the tendon research.

research product

Lower limb muscle weakness predicts use of a multiple- versus single-step strategy to recover from forward loss of balance in older adults.

BACKGROUND: Older adults compared with young adults have reduced strength and balance recovery ability. The purpose of the present study was to investigate whether age, sex, and/or lower limb strength predicted the stepping strategy used to recover from a forward loss of balance. METHODS: Ninety-five, community-dwelling, older adults, aged 65-90 years, participated in the study. Loss of balance was induced by releasing participants from a static forward lean. Participants performed four trials at three initial lean magnitudes and were subsequently classified as using a single- or multiple-step strategy. Isometric strength of the ankle, knee, and hip joint flexors and extensors was assessed …

research product

Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) w…

research product