0000000000088308

AUTHOR

Ingo Ott

0000-0002-8087-4618

Ferrocenyl-Coupled N-Heterocyclic Carbene Complexes of Gold(I)

Four gold(I) carbene complexes featuring 4-ferro-cenyl-substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalized lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: through a genuine ferrocene effect and by inhibiting the thioredoxin reductase. Both complexes gave rise to a reorganization of the F-actin cytoskeleton in endothelial and melanoma cells, associated with a G1 phase c…

research product

Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity

The synthesis and characterization of three propynyloxycoumarins are reported in this work together with the formation of three different series of gold(i) organometallic complexes. Neutral complexes are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its corresponding dialkynyl complex is also shown and the formation of rectangular dimers for the gold derivative in the solid state can be observed. A detailed analysis of the absorption and emission spectra of both ligands and complexes allows us to attribute the luminescent behaviour to the coumarin organic ligand. More…

research product

Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction

Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well…

research product

Synthesis and Biological Evaluation of Organometallic Complexes Bearing Bis‐1,8‐naphthalimide Ligands

Organometallic N-heterocyclic carbene (NHC) complexes with intercalating bis-naphthalimide ligands were prepared and evaluated biologically. Cytotoxic effects against tumor cells or bacteria were strongly ligand dependent with minor influence of the metal (Ag, Ru, Rh, Au) centers. Complex 8b with a rhodium(I) NHC moiety was studied in more detail for its DNA interacting properties in comparison to the metal free ligand. These studies showed a good DNA binding pattern with some preference for the telomeric quadruplex structure hTelo. Complex 8b was also shown to trigger additional coordinative binding to the DNA and therefore represents an useful tool compound with a mixed intercalative/coor…

research product

Metal NHC Complexes with Naphthalimide Ligands as DNA-Interacting Antiproliferative Agents

Naphthalimide-based N-heterocyclic carbene (NHC) complexes of the type [(1,5-cyclooctadiene)(NHC)RhCl)] (4 a-c), [(p-cymene)(NHC)RuCl2 )] (5 a-c), and [(NHC)CuBr] (6 a-c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely driven by the naphthalimide structure, which is a DNA-intercalating moiety. Regarding the metal center, the highest activities were observed with the rhodium complexes, and cytotoxic activity was significantly lower for the ruthenium derivatives. The stable coordination of the NHC ligands of selected complexes 4 b and 5 b in solution was confirmed, and their DNA binding properties were studied by UV/Vis spectro…

research product

CCDC 955661: Experimental Crystal Structure Determination

Related Article: Julià Arcau, Vincent Andermark, Elisabet Aguiló, Albert Gandioso, Artur Moro, Mario Cetina, João Carlos Lima, Kari Rissanen, Ingo Ott, Laura Rodríguez|2014|Dalton Trans.|43|4426|doi:10.1039/C3DT52594E

research product

CCDC 1500972: Experimental Crystal Structure Determination

Related Article: Julienne K. Muenzner, Bernhard Biersack, Alexander Albrecht, Tobias Rehm, Ulrike Lacher, Wolfgang Milius, Angela Casini, Jing-Jing Zhang, Ingo Ott, Viktor Brabec, Olga Stuchlikova, Ion C. Andronache, Leonard Kaps, Detlef Schuppan, Rainer Schobert|2016|Chem.-Eur.J.|22|18953|doi:10.1002/chem.201604246

research product

CCDC 955660: Experimental Crystal Structure Determination

Related Article: Julià Arcau, Vincent Andermark, Elisabet Aguiló, Albert Gandioso, Artur Moro, Mario Cetina, João Carlos Lima, Kari Rissanen, Ingo Ott, Laura Rodríguez|2014|Dalton Trans.|43|4426|doi:10.1039/C3DT52594E

research product

CCDC 1510249: Experimental Crystal Structure Determination

Related Article: Wojciech Streciwilk, Alessio Terenzi, Rainer Misgeld, Corazon Frias, Peter G. Jones, Habil. Aram Prokop, Bernhard K. Keppler, Ingo Ott|2017|ChemMedChem|12|214|doi:10.1002/cmdc.201600557

research product