0000000000088486

AUTHOR

Arne Keller

showing 6 related works from this author

Unitary time-dependent superconvergent technique for pulse-driven quantum dynamics

2003

We present a superconvergent Kolmogorov-Arnold-Moser type of perturbation theory for time-dependent Hamiltonians. It is strictly unitary upon truncation at an arbitrary order and not restricted to periodic or quasiperiodic Hamiltonians. Moreover, for pulse-driven systems we construct explicitly the KAM transformations involved in the iterative procedure. The technique is illustrated on a two-level model perturbed by a pulsed interaction for which we obtain convergence all the way from the sudden regime to the opposite adiabatic regime.

PhysicsQuantum PhysicsTruncationIterative methodQuantum dynamicsFOS: Physical sciencesSuperconvergenceUnitary stateAtomic and Molecular Physics and OpticsQuasiperiodic functionPerturbation theory (quantum mechanics)Quantum Physics (quant-ph)Adiabatic processMathematics::Symplectic GeometryMathematical physicsPhysical Review A
researchProduct

Time-dependent unitary perturbation theory for intense laser-driven molecular orientation

2004

We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.

PhysicsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Dynamics (mechanics)Zero (complex analysis)FOS: Physical sciencesPropagator02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesUnitary stateAtomic and Molecular Physics and Opticslaw.inventionMolecular dynamics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawOrientation (geometry)Quantum electrodynamics0103 physical sciencesPerturbation theory (quantum mechanics)Quantum Physics (quant-ph)010306 general physics0210 nano-technology
researchProduct

Laser control for the optimal evolution of pure quantum states

2005

Starting from an initial pure quantum state, we present a strategy for reaching a target state corresponding to the extremum (maximum or minimum) of a given observable. We show that a sequence of pulses of moderate intensity, applied at times when the average of the observable reaches its local or global extremum, constitutes a strategy transferable to different control issues. Among them, post-pulse molecular alignment and orientation are presented as examples. The robustness of such strategies with respect to experimentally relevant parameters is also examined.

PhysicsQuantum PhysicsSequence[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesObservableState (functional analysis)Laser01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmaslaw.invention[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum stateRobustness (computer science)lawOrientation (geometry)Quantum mechanics0103 physical sciencesStatistical physicsQuantum Physics (quant-ph)010306 general physicsIntensity (heat transfer)
researchProduct

Reaching optimally oriented molecular states by laser kicks

2004

We present a strategy for post-pulse orientation aiming both at efficiency and maximal duration within a rotational period. We first identify the optimally oriented states which fulfill both requirements. We show that a sequence of half-cycle pulses of moderate intensity can be devised for reaching these target states.

PhysicsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]business.industryOrientation (computer vision)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.inventionOptics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawControl theory0103 physical sciences010306 general physics0210 nano-technologybusinessQuantum Physics (quant-ph)
researchProduct

Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems

2003

We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions. We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation. We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders of magnitude with respect to the Magnus expansion.

PhysicsQuantum PhysicsQuantum dynamicsFOS: Physical sciencesSuperconvergenceMolecular systemsUnitary stateAtomic and Molecular Physics and OpticsPulse (physics)Orders of magnitude (time)Quantum electrodynamicsMagnus expansionPerturbation theory (quantum mechanics)Statistical physicsQuantum Physics (quant-ph)
researchProduct

Pulse-driven quantum dynamics beyond the impulsive regime

2004

We review various unitary time-dependent perturbation theories and compare them formally and numerically. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexponential character of correction terms and the possibility to optimize the accuracy of a given level of approximation which is explored in details here. As an illustration, we consider a two-level system driven by short pulses beyond the sudden limit.

PhysicsQuantum Physicssymbols.namesakeClassical mechanicsQuantum dynamicsHilbert spacesymbolsFOS: Physical sciencesPerturbation (astronomy)Quantum Physics (quant-ph)Unitary stateAtomic and Molecular Physics and OpticsPhysical Review A
researchProduct