0000000000088684

AUTHOR

A. Rybin

showing 5 related works from this author

Identified particles in quark and gluon jets

1997

A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K+, K-0, p, Lambda and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity. (C) 1997 Published by Elsevier Science B.V.

QuarkNuclear and High Energy PhysicsParticle physicsAntiparticleElectron–positron annihilationAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeHadronNuclear Theory01 natural sciencesPartícules (Física nuclear)Nuclear physicsPHYSICSMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsDetectors de radiacióDELPHIQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAVERAGE MULTIPLICITIES; MONTE-CARLO; QCD; PHYSICSQCDLARGE ELECTRON POSITRON COLLIDERPhoton structure functionCharged particleGluonPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - ExperimentAVERAGE MULTIPLICITIES
researchProduct

FIRST MEASUREMENT OF THE STRANGE QUARK ASYMMETRY AT THE Z(0) PEAK

1995

A measurement of the strange quark forward-backward asymmetry at the Z0 peak was performed using 718,000 multihadronic Z0 decays collected by the DELPHI detector at LEP in 1992. The s-quark was tagged by the presence of high momentum charged kaons identified by the Ring Imaging Cherenkov detector and by Λ0;s decaying into pπ-. The s-quark purity obtained was estimated for the two hadrons to be 43%. The average s-quark asymmetry was found to be 0.131±0.035 (stat.) ±0.013 (syst.). The forward-backward asymmetry was measured for unresolved d-and s-quarks, tagged by the detection of a high energy neutron or neutral kaon in the Hadron Calorimeter. The combined d-and s-quark purity was 69% and th…

Strange quarkParticle physicsPhysics and Astronomy (miscellaneous)s-quarkLUND MONTE-CARLOHigh Energy Physics::LatticeElectron–positron annihilationmedia_common.quotation_subjectHadronNuclear TheoryLUND MONTE-CARLO; CHARGE ASYMMETRY; HADRONIC DECAYS; Z0; ANNIHILATION; EVENTS; JETSLambda01 natural sciencesAsymmetryRing-imaging Cherenkov detectorPartícules (Física nuclear)EVENTSNuclear physics0103 physical sciencesDELPHI; asymmetry; Z0 resonance; s-quark[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronZ0ANNIHILATION010306 general physicsNuclear ExperimentCHARGE ASYMMETRYEngineering (miscellaneous)DELPHImedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyWeinberg angleLARGE ELECTRON POSITRON COLLIDERZ0 resonancePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIJETSPARTICLE PHYSICSHigh Energy Physics::ExperimentCol·lisionadors d'hadronsHADRONIC DECAYSasymmetryParticle Physics - Experiment
researchProduct

A measurement of the tau lifetime

1993

The tau lepton lifetime is measured using four different methods with the DELPHI detector. Three measurements using one prong decays are combined, accounting for correlations, resulting in tau(tau) = 298 +/- 7 (stat.) +/- 4 (syst.) fs while the decay length distribution of three prong decays gives tau(tau) = 298 +/- 13 (stat.) +/- 5 (syst.) fs. The combined result is tau(tau) = 298 +/- 7 fs. The ratio of the Fermi coupling constant from tau decay relative to that from muon decay is found to be 0.985 +/- 0.013, compatible with lepton universality.

PhysicsCoupling constantParticle physicsArgusNuclear and High Energy PhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsElectron–positron annihilation01 natural sciences7. Clean energyNuclear physics0103 physical sciencesDecay lengthLEPTONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclearCombined result010306 general physicscomputerParticle Physics - ExperimentFermi Gamma-ray Space TelescopeLeptoncomputer.programming_language
researchProduct

First measurement of f′2 (1525) production in Z0 hadronic decays

1996

The inclusive production of the f(2)'(1525) in hadronic Z(0) decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f(2)'(1525) --> K+K-. The average number of f(2)(')(1525) produced per hadronic Z decay, [f(2)'] = 0.020 +/- 0.005 (stat) +/- 0.006 (syst), and the momentum distribution of the f(2)'(1525) have both been measured. The mass and width of the f(2)'(1525) are found to be [M(f2)'] = 1535 +/- 5 (stat) +/- 4 (syst) MeV/c(2). [Gamma(f2)'] = 60 +/- 20 (stat) +/- 19 (syst) MeV/c(2)

Nuclear and High Energy PhysicsLUND MONTE-CARLOCherenkov detectorElectron–positron annihilationK+KHadron01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONPrime (order theory)law.inventionK identificationMomentumNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsCherenkov radiationDELPHIPhysicsDELPHI; Cherenkov detector; K identificationE+E-PHYSICS010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyJ-PSILARGE ELECTRON POSITRON COLLIDERSTATESPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentProduction (computer science)Particle Physics - ExperimentCherenkov detectorLUND MONTE-CARLO; JET FRAGMENTATION; E+E-PHYSICS; J-PSI; STATES; K+K
researchProduct

Measurement of $\Delta^{++}$(1232) production in hadronic Z decays

1995

A measurement of the \Delta^{++}(1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected~ by the DELPHI~ detector in the 1994 LEP running~ period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average \Delta^{++}(1232) multiplicity per hadronic event is 0.079 \pm 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e^{+}e^- annihilations.

Hadronic decayNuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONSe+e- annihilationCherenkov detectorElectron–positron annihilationDELPHI; hadronic decay; Cherenkov detector; e+e- annihilationHadron01 natural sciencesPartícules (Física nuclear)law.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Multiplicity (chemistry)010306 general physicsCherenkov radiationhadronic decayDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentCherenkov detector
researchProduct