0000000000089755

AUTHOR

Giovanni Venturoli

0000-0002-9576-1480

showing 3 related works from this author

Probing light-induced conformational transitions in bacterial photosynthetic reaction centers embedded in trehalose-water amorphous matrices.

2004

Abstract The coupling between electron transfer and protein dynamics has been studied in photosynthetic reaction centers (RC) from Rhodobacter sphaeroides by embedding the protein into room temperature solid trehalose–water matrices. Electron transfer kinetics from the primary quinone acceptor (Q A − ) to the photoxidized donor (P + ) were measured as a function of the duration of photoexcitation from 20 ns (laser flash) to more than 1 min. Decreasing the water content of the matrix down to ≈5×10 3 water molecules per RC causes a reversible four-times acceleration of P + Q A − recombination after the laser pulse. By comparing the broadly distributed kinetics observed under these conditions …

Photosynthetic reaction centreLightPhotochemistryProtein ConformationKineticsPhotosynthetic Reaction Center Complex ProteinsBiophysicsAnalytical chemistryThermal fluctuationsPhotosynthetic reaction center; Trehalose; Electron transfer; Protein dynamics; Conformational relaxationProtein dynamicsRhodobacter sphaeroidesBiochemistryElectron transferElectron TransportRhodobacter sphaeroidesElectron transferSoft matterbiologyChemistryTrehaloseWaterCell Biologybiology.organism_classificationPhotosynthetic reaction centerConformational relaxationPhotoexcitationRelaxation (physics)Biochimica et biophysica acta
researchProduct

Internal dynamics and protein-matrix coupling in trehalose-coated proteins.

2005

Abstract We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water–trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides ). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q B containing or Q B deprived reaction centre from R. sphaeroides . Experimental result…

Models MolecularAbsorption spectroscopyPhotosynthetic Reaction Center Complex ProteinsBiophysicsHemeRhodobacter sphaeroidesNeutron scatteringBiochemistryAnalytical Chemistrychemistry.chemical_compoundRhodobacter sphaeroidesMolecular dynamicsSpectroscopy Fourier Transform InfraredComputer SimulationMolecular Biologytrehalose protein simulation spectroscopyPhotolysisbiologyHydrogen bondMyoglobinTemperatureTrehaloseWaterHydrogen Bondingbiology.organism_classificationCrystallographyKineticsMyoglobinchemistryMembrane proteinFlash photolysisBiochimica et biophysica acta
researchProduct

Cytochrome c in a Dry Trehalose Matrix: Structural and Dynamical Effects Probed by X-Ray Absorption Spectroscopy

2007

AbstractWe report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the pre…

Models MolecularProtein ConformationIronAb initioBiophysicsHemechemistry.chemical_compoundProtein structureImidazoleAnimalsHistidineHorsesSpectroscopyX-ray absorption spectroscopyMyocardiumSpectrum AnalysisX-RaysProteinsCytochromes cTrehaloseTrehaloseX-ray absorption fine structureSolutionsCrystallographychemistryPolyvinyl AlcoholAbsorption (chemistry)Biophysical Journal
researchProduct