0000000000089937

AUTHOR

David Enot

Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance

International audience; Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemoth…

research product

The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide

The Microbiota Makes for Good Therapy The gut microbiota has been implicated in the development of some cancers, such as colorectal cancer, but—given the important role our intestinal habitants play in metabolism—they may also modulate the efficacy of certain cancer therapeutics. Iida et al. (p. 967 ) evaluated the impact of the microbiota on the efficacy of an immunotherapy [CpG (the cytosine, guanosine, phosphodiester link) oligonucleotides] and oxaliplatin, a platinum compound used as a chemotherapeutic. Both therapies were reduced in efficacy in tumor-bearing mice that lacked microbiota, with the microbiota important for activating the innate immune response against the tumors. Viaud et…

research product

Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.

International audience; The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/ Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-gamma-producing gamma delta Tau cells in cancer lesions. The immune sensor, NOD2, limited CTX…

research product

NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients

International audience; Despite effective targeted therapy acting on KIT and PDGFRA tyrosine kinases, gastrointestinal stromal tumors (GIST) escape treatment by acquiring mutations conveying resistance to imatinib mesylate (IM). Following the identification of NKp30-based immunosurveillance of GIST and the off-target effects of IM on NK cell functions, we investigated the predictive value of NKp30 isoforms and NKp30 soluble ligands in blood for the clinical response to IM. The relative expression and the proportions of NKp30 isoforms markedly impacted both event-free and overall survival, in two independent cohorts of metastatic GIST. Phenotypes based on disbalanced NKp30B/NKp30C ratio (Del…

research product

Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy

International audience; The immune system is routinely confronted with cell death resulting from the physiological turnover of renewable tissues, as well as from pathological insults of several types. We hypothesize the existence of a mechanism that allows the immune system to discriminate between physiological and pathological instances of cell death, but the factors that determine whether cellular demise is perceived as a neutral, tolerogenic or immunogenic event remain unclear 1. Infectious insults are accompanied by so-called microbe-associated molecular patterns (MAMPs), i.e., viral or bacterial products that activate immune cells through a panel of pattern-recognition receptors (PRRs)…

research product

Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

How dying tumor cells get noticed Besides killing tumor cells directly, some chemotherapies, such as anthracyclines, also activate the immune system to kill tumors. Vacchelli et al. discovered that in mice, anthracycline-induced antitumor immunity requires immune cells to express the protein formyl peptide receptor 1 (FPR1). Dendritic cells (DCs) near tumors expressed especially high amounts of FPR1. DCs normally capture fragments of dying tumor cells and use them to activate nearby T cells to kill tumors, but DCs lacking FPR1 failed to do this effectively. Individuals with breast or colon cancer expressing a variant of FPR1 and treated with anthracyclines showed poor metastasis-free and ov…

research product