0000000000089954

AUTHOR

Francesco Di Virgilio

0000-0003-3566-1362

showing 2 related works from this author

Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance

2016

International audience; Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemoth…

0301 basic medicineCancer ResearchATP citrate lyaseSpermidineBariatric SurgeryimmunosurveillanceT-Lymphocytes RegulatoryAutophagy-Related Protein 5[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundMiceregulatory T cellCitrates3. Good healthImmunogenic Cell-DeathImmunosurveillancemedicine.anatomical_structureOncologyBiochemistryDifferentiationembryonic structuresImmunogenic cell deathIn-VivoHumanRegulatory T cell[SDV.CAN]Life Sciences [q-bio]/Cancer[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyDietary RestrictionNOProto-Oncogene Proteins p21(ras)03 medical and health sciencesMonitoring ImmunologicIn vivoCell Line TumormedicineAutophagyAnimalsHumanscancerChemotherapyBreast-CancerCaloric Restrictioncancer; chemotherapy immunosurveillance regulatory T cellAnimal[ SDV.BC ] Life Sciences [q-bio]/Cellular Biologyregulatory T&nbspAutophagyfungiNeoplasms ExperimentalcellSpermidineMethotrexate030104 developmental biologychemistryAcetylationMutationCancer researchCitrateNeoplasm Transplantation
researchProduct

Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice

2011

Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recr…

Programmed cell deathcells cancer immunogenicity calreticulin exposure hmgb1Antineoplastic AgentsBiologyimmunogenicityNOMicechemistry.chemical_compoundAdenosine TriphosphateImmune systemCell Line TumorNeoplasmsAutophagyExtracellularAnimalsHumanscancerMice Inbred BALB CMultidisciplinaryCell DeathImmunogenicityAutophagyDendritic CellsMice Inbred C57BLhmgb1chemistryCell cultureCancer researchImmunogenic cell deathcellsMitoxantroneCalreticulinAdenosine triphosphatecalreticulin exposure
researchProduct