0000000000092810

AUTHOR

Anna Mazhorova

showing 5 related works from this author

Affordable, ultra-broadband coherent detection of terahertz pulses via CMOS-compatible solid-state devices

2017

We demonstrate the first fully solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation attained in integrated CMOS-compatible devices.

Materials sciencebusiness.industryTerahertz radiationSpectral densitySecond-harmonic generationSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technology021001 nanoscience & nanotechnologySettore ING-INF/01 - Elettronica01 natural sciencesElectromagnetic radiationTerahertz spectroscopy and technologyOpticsNonlinear optics Ultrafast optics Far infrared or terahertz Solid state detectorsElectric field0103 physical sciencesBroadbandOptoelectronicsHeterodyne detection010306 general physics0210 nano-technologybusinessConference on Lasers and Electro-Optics
researchProduct

Asymmetric Dual-Grating Micro-Slit Configuration for Broadband Solid State Coherent Detection of THz Pulses

2016

We demonstrated solid-state broadband coherent Terahertz characterization based on the Terahertz Field Induced Second Harmonic effect in Silica. The THz detector consists of an asymmetric micro-slit array which can be operated at 200V applied bias.

Materials scienceField (physics)business.industryTerahertz radiationSolid-statePhysics::Optics02 engineering and technologyGrating021001 nanoscience & nanotechnology01 natural sciencesSlitTerahertz spectroscopy and technology0103 physical sciencesBroadbandHarmonicOptoelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Ultra-broadband terahertz time domain spectroscopy by Solid State Biased Coherent Detection

2017

The spectral fingerprint of ibuprofen within the THz frequency window has been retrieved through an ultra-broadband THz Time Domain Spectrometry set-up. The latter implements the Solid State Biased Coherent Detection scheme, based on a compact CMOS-compatible integrated device. Such a technique shows unprecedented advantages in term of bandwidth (greater than 10 THz) over other solid state methods like electro-optic sampling.

Physicsbusiness.industryTerahertz radiationBandwidth (signal processing)Solid-stateNonlinear optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOptics0103 physical sciencesBroadbandTime domain010306 general physics0210 nano-technologybusinessTerahertz time-domain spectroscopySpectroscopy2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
researchProduct

Solid-state-biased coherent detection of ultra-broadband terahertz pulses

2017

Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias v…

coherent detectionTA1501Nonlinear opticTerahertzFar infrared or terahertzFour-wave mixingUltrafast opticDevicePhysics::OpticsUltrafast laserSolid state detectorSettore ING-INF/01 - ElettronicaQC0350Optica
researchProduct

3084329.pdf

2017

Supplementary Materials

researchProduct