0000000000094811

AUTHOR

E. Siesling

showing 4 related works from this author

Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

2011

A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were…

PhysicsNuclear and High Energy PhysicsIon beamAtomic Physics (physics.atom-ph)Voltage dividerOther Fields of PhysicsFOS: Physical sciencesLaserAcceleration voltagelaw.inventionPhysics - Atomic PhysicslawCalibrationPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsDetectors and Experimental TechniquesSpectroscopyNuclear ExperimentInstrumentationBeam (structure)Voltage
researchProduct

An innovative Superconducting Recoil Separator for HIE-ISOLDE

2023

International audience; The ISOLDE Scientific Infrastructure at CERN offers a unique range of post-accelerated radioactive beams. The scientific program can be improved with the “Isolde Superconducting Recoil Separator” (ISRS), an innovative spectrometer able to deliver unprecedented (A, Z) resolution. In this paper we present an overview of the physics and ongoing technical developments.

Nuclear and High Energy Physicsspektrometria[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]tutkimuslaitteetspektrometritydinfysiikkaAccelerators and Storage RingsInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Enhanced Quadrupole and Octupole Strength in Doubly Magic Sn132

2018

The first 2+ and 3- states of the doubly magic nucleus Sn132 are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The Sn132 ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a Pb206 target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0g.s.+→21+, 0g.s.+→31-, and 21+→31- in Sn132. The results on these states provide crucial information on cross-shell configurations which are determined within large-sca…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsProjectileMonte Carlo methodGeneral Physics and AstronomyCoulomb excitation01 natural sciencesIonExcited state0103 physical sciencesQuadrupoleAtomic physicsNuclear Experiment010306 general physicsNucleonPhysical Review Letters
researchProduct

Enhanced Quadrupole and Octupole Strength in Doubly Magic ^{132}Sn.

2018

International audience; The first $2^+$ and $3^-$ states of the doubly magic nucleus $^{132}$Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The $^{132}$Sn ions are accelerated to an energy of 5.49  MeV/nucleon and impinged on a $^{206}$Pb target. Deexciting $\gamma$ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions $0_{g.s.}^+ \rightarrow 2_1^+$, $0_{g.s.}^+ \rightarrow 3_1^-$, and $2_1^+ \rightarrow 3_1^-$ in $^{132}$Sn. The res…

nuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikkaNuclear PhysicsPhysical review letters
researchProduct