0000000000104246

AUTHOR

Grażyna Bartelmus

Kinetics of Cometabolic Biodegradation of 4-Chlorophenol and Phenol by Stenotrophomonas Maltophilia KB2

The cometabolic biodegradation of 4-Chlorophenol (4-CP) by the Stenotrophomonas maltophilia KB2 strain in the presence of phenol (P) was studied. In order to determine the kinetics of biodegradation of both substrates, present alone and in cometabolic systems, a series of tests was carried out in a batch reactor changing, in a wide range, the initial concentration of both substrates. The growth of the tested strain on phenol alone was described by Haldane kinetic model (mm = 0:9 1/h, Ksg = 48:97 gg/m3, KIg = 256:12 gg/m3, Yxg = 0:5715). The rate of 4-CP transformation by resting cells of KB2 strain was also described by Haldane equation and the estimated parameters of the model were: kc = 0…

research product

Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain

Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their hig…

research product

Kinetics of styrene biodegradation by Pseudomonas sp. E-93486

The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5–90 g m−3. The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μm = 0.1188 h−1, KS = 5.984 mg l−1, and Ki = 156.6 mg l−1. The yield coefficient mean value \documentclass[12pt]{minimal} \usepackage{amsmath} \…

research product