0000000000104733

AUTHOR

I. Caracas

showing 6 related works from this author

Measurement of the cosmic-ray energy spectrum above 2.5×1018  eV using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…

cosmic ray; astroparticle detectors; cosmic ray spectraEnergy SpectrumSettore FIS/01 - Fisica SperimentaleUltra-high energy cosmic rays energy spectrum Cherenkov detectorsUHE Cosmic Rays
researchProduct

Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory

2019

Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν -2 spectrum in the energy range 1.0 × 1017 eV -2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10-9 GeV cm-2 s-1 sr-1, placing str…

cosmological neutrinosAstronomyFluxAstrophysics01 natural sciences7. Clean energycosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic rayssurface [detector]Ultra-high-energy cosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)cosmological neutrinoSettore FIS/01 - Fisica SperimentaleDETETORESneutrino: UHEUHE [neutrino]Augerobservatorytrajectoryneutrino: flavorProduction (computer science)NeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencescosmic ray experimentCosmic rayultra high energy cosmic raysneutrino: productionneutrino astronomyproduction [neutrino]TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530model [neutrino]High Energy Physicscosmic radiation: UHEZenithAstrophysiqueneutrino: modelPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsdetector: surfaceHigh Energy Physics::Phenomenologyflavor [neutrino]Astronomy and AstrophysicsAstronomiefluxExperimental High Energy PhysicsatmosphereHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory

2019

With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…

cosmological neutrinosAstronomypoleFluxAstrophysics01 natural sciencesneutrino: fluxcosmic ray experiments; cosmological neutrinos; neutrino astronomy; ultra high energy cosmic raysmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSastro-ph.HEcosmological neutrinoSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSneutrino: UHEAugerobservatoryNEUTRINOSNeutrinoAstrophysics - High Energy Astrophysical Phenomenaairmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesultra high energy cosmic raysDeclinationneutrino astronomyCelestial pole0103 physical sciencesflux: upper limitHigh Energy PhysicsDETECTORZenithAstrophysiquePierre Auger Observatoryflavorshowers: atmosphere010308 nuclear & particles physicsdetector: surfaceNorthern HemisphereAstronomy and AstrophysicsAstronomiesensitivitySkyExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Calibration of the underground muon detector of the Pierre Auger Observatory

2021

To obtain direct measurements of the muon content of extensive air showers with energy above $10^{16.5}$ eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 $\mathrm{m^2}$-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m$^2$ close to the intersection of the shower axis with the ground to much less than one per m$^2$ when far away, the necessary bro…

muon: showersdata acquisitionPhysics::Instrumentation and DetectorsAstronomyDetector alignment and calibration methods (lasers sources particle-beams)primary [cosmic radiation]Particle detectors7. Clean energy01 natural sciencesEtc)030218 nuclear medicine & medical imaging0302 clinical medicinecalibration [detector]ObservatoryAPDsdetector: calibrationatmosphere [muon]InstrumentationPhoton detectors for UVshowers [muon]Mathematical PhysicsPhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDsSi-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Particle-beams)Physicsenergy: highdetector [muon]EBCCDsPhysicselectronicsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSourcesSi-PMTsdetector: alignmentAugermuon: atmosphereobservatorydensity [muon]G-APDshigh [energy]Particle detectorAstrophysics - Instrumentation and Methods for Astrophysicsatmosphere [showers]Detector alignment and calibration methods (lasers sourcesparticle-beams)FOS: Physical sciencesCosmic rayScintillatorParticle detectorVisible and IR photons (solid-state) (PIN diodes03 medical and health sciencesOpticsSilicon photomultipliermuon: density0103 physical sciencesCalibrationddc:530photomultiplier: silicon[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610High Energy PhysicsCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)scintillation counterParticle detectors; Detector alignment and calibration methods (lasers sources particle-beams); Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Performance of High Energy Physics DetectorsPierre Auger ObservatoryMuonshowers: atmosphere010308 nuclear & particles physicsbusiness.industrymuon: detectorCCDscosmic radiation: primaryDetector alignment and calibration methods (lasersEMCCDsanalog-to-digital converterAPDs; CCDs; CMOS imagers; Detector alignment and calibration methods (lasers; EBCCDs; EMCCDs; Etc); G-APDs; Particle detectors; Particle-beams); Performance of High Energy Physics Detectors; Photon detectors for UV; Si-PMTs; Sources; Visible and IR photons (solid-state) (PIN diodesExperimental High Energy Physicssilicon [photomultiplier]Performance of High Energy Physics DetectorsHigh Energy Physics::Experimentphoton: detectorbusinessalignment [detector]RAIOS CÓSMICOSdetector [photon]astro-ph.IM
researchProduct

Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory

2020

We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsAstrophysicsanisotropy [cosmic radiation]Amplitude01 natural sciencessurface [detector]010303 astronomy & astrophysicsRight ascensionastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSGalactic CenterAstrophysics::Instrumentation and Methods for AstrophysicsCosmic RaysAugerobservatoryAmplitudePhysics::Space PhysicsAstrophysics - High Energy Astrophysical PhenomenaExtragalactic cosmic rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raycosmic radiation: anisotropyExtragalactic cosmic rayGalactic center0103 physical sciencesHigh Energy PhysicsPierre auger observatory0105 earth and related environmental sciencesPierre Auger Observatorydetector: surfaceFísicaAstronomy and AstrophysicsCosmic rayefficiency [trigger]GalaxyDipole* Automatic Keywords *Space and Planetary ScienceExperimental High Energy Physicstrigger: efficiencyddc:520galaxyDipoleObservatoryEnergy (signal processing)anisotropiesRight ascension[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)dipoleThe Astrophysical Journal
researchProduct

Direct measurement of the muonic content of extensive air showers between 2× 1017 and 2×1018 eV at the Pierre Auger Observatory

2020

The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2 × 10 17 and 2 × 10 18 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector …

Muon detector ultra-high energy cosmic raysmuonsUHE Cosmic Rays
researchProduct