0000000000105086

AUTHOR

Nicolas Gourmelon

showing 3 related works from this author

Dynamic instability in absence of dominated splittings.

2006

We want to understand the dynamics in absence of dominated splittings. A dominated splitting is a weak form of hyperbolicity where the tangent bundle splits into invariant subbundles, each of them is more contracted or less expanded by the dynamics than the next one. We first answer an old question from Hirsch, Pugh and Shub, and show the existence of adapted metrics for dominated splittings.Mañé found on surfaces a $C^1$-generic dichotomy between hyperbolicity and Newhouse phenomenons (infinitely many sinks/sources). For that purpose, he showed that without a strong enough dominated splitting along one periodic orbit, a $C^1$-perturbation creates a sink or a source. We generalise that last…

[ MATH ] Mathematics [math]partially hyperbolichomoclinic classdécomposition dominéeadapted metricmétrique adaptée[MATH] Mathematics [math]homoclinic tangencychain-recurrent.dominated splittinghyperbolic dynamicsclasse homoclinebifurcationphénomène de Newhousepartiellement hyperboliqueNewhouse phenomenonrécurrent par chaines.[MATH]Mathematics [math]récurrent par chainestangence homoclinedynamique hyperbolique
researchProduct

Tame dynamics and robust transitivity

2011

One main task of smooth dynamical systems consists in finding a good decomposition into elementary pieces of the dynamics. This paper contributes to the study of chain-recurrence classes. It is known that $C^1$-generically, each chain-recurrence class containing a periodic orbit is equal to the homoclinic class of this orbit. Our result implies that in general this property is fragile. We build a C1-open set U of tame diffeomorphisms (their dynamics only splits into finitely many chain-recurrence classes) such that for any diffeomorphism in a C-infinity-dense subset of U, one of the chain-recurrence classes is not transitive (and has an isolated point). Moreover, these dynamics are obtained…

[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

A Franks' lemma that preserves invariant manifolds

2009

A well-known lemma by John Franks asserts that one obtains any perturbation of the derivative of a diffeomorphism along a periodic orbit by a $C^1$-perturbation of the whole diffeomorphism on a small neighbourhood of the orbit. However, one does not control where the invariant manifolds of the orbit are, after perturbation. We show that if the perturbated derivative is obtained by an isotopy along which some strong stable/unstable manifolds of some dimensions exist, then the Franks perturbation can be done preserving the corresponding stable/unstable semi-local manifolds. This is a general perturbative tool in $C^1$-dynamics that has many consequences. We give simple examples of such conseq…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics37C25 37C29 37C20 37D10[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct