0000000000105927

AUTHOR

M. R. Zapatero Osorio

showing 3 related works from this author

Radio emission in ultracool dwarfs: the nearby substellar triple system VHS 1256$-$1257

2018

Aims. With the purpose of investigating the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92-125723.9 (hereafter VHS 1256-1257); this system is composed by an equal-mass M7.5 binary and a L7 low-mass substellar object located at only 15.8 pc. Methods. We observed in phase-reference mode the system VHS 1256-1257 with the Karl G. Jansky Very Large Array at X band and L band and with the European VLBI Network at L band in several epochs during 2015 and 2016. Results. We discovered radio emission at X band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 μJy. We determined a spectral index α …

Magnetic field - radiation mechanismsPhysicsInterferometric010504 meteorology & atmospheric sciencesTriple systemBrown dwarfFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGeneral - techniques01 natural sciencesBrown dwarfs - starsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciences010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct

New constraints on the presence of debris disks around G 196-3 B and VHS J125601.92-125723.9 b

2023

We obtained deep images of G 196-3 B and VHS J1256-1257 b with the NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm. These data were combined with recently published Atacama Large Millimeter Array (ALMA) and Very Large Array (VLA) data of VHS J1256-1257 b at 0.87 mm and 0.9 cm, respectively. Neither G 196-3 B nor VHS J1256-1257 b were detected in the NOEMA, ALMA and VLA data. At 1.3 mm, we imposed flux upper limits of 0.108 mJy (G 196-3 B) and 0.153 mJy (VHS J1256-1257 b) with a 3-sigma confidence. Using the flux upper limits at the millimeter and radio wavelength regimes, we derived maximum values of 0.016 M$_{\rm Earth}$ and 0.004 M$_{\rm Earth}$ for the mass of any cold dust that mig…

Earth and Planetary Astrophysics (astro-ph.EP)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceFOS: Physical sciencesAstronomy and AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics - Earth and Planetary Astrophysics
researchProduct