0000000000105972

AUTHOR

Andreas Minikin

showing 11 related works from this author

Characterization of the inter-annual, seasonal, and diurnal variations of condensation particle concentrations at Neumayer, Antarctica

2011

Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 cm<sup>−3</sup>) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 10<sup>3</sup> cm<sup>−3</sup> in March. Minimum values below 10<sup>2</sup> cm<sup>–3</sup> were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between…

Atmospheric Sciencefood.ingredient010504 meteorology & atmospheric sciencesAtmospheric circulationaerosolnon-volatile particles010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:ChemistryfoodUltrafine particlecondensation particlesmedicine14. Life underwater0105 earth and related environmental sciencesVulcanian eruptionSea saltCondensationAtmosphärische SpurenstoffeNeumayerSeasonalitymedicine.diseaselcsh:QC1-999Aerosollcsh:QD1-99913. Climate actionClimatologyEnvironmental scienceParticlelcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism

2011

New particle formation (NPF), which generates nucleation mode aerosol, was observed in the tropical Upper Troposphere (UT) and Tropical Tropopause Layer (TTL) by in situ airborne measurements over South America (January–March 2005), Australia (November–December 2005), West Africa (August 2006) and Central America (2004–2007). Particularly intense NPF was found at the bottom of the TTL. Measurements with a set of condensation particle counters (CPCs) with different <i>d</i><sub>p50</sub> (50% lower size detection efficiency diameter or "cut-off diameter") were conducted on board the M-55 <i>Geophysica</i> in the altitude range of 12.0–20.5 km and on board …

Atmospheric Science010504 meteorology & atmospheric sciencesDISPERSION MODEL FLEXPARTaerosolnucleationNucleationclouds010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencestropicsTropospherelcsh:Chemistrynew particle formationddc:550Cloud condensation nucleiLife ScienceStratosphere0105 earth and related environmental sciencesGeophysica[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereIce cloudAtmosphärische SpurenstoffeFalconlcsh:QC1-999AerosolJAQUEOUS SULFURIC-ACIDlcsh:QD1-99913. Climate actionClimatologyupper troposphereEnvironmental scienceOutflowAEROSOL NUCLEATIONLOWER STRATOSPHERETropopauselcsh:PhysicsGALACTIC COSMIC-RAYS
researchProduct

The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO

2016

Abstract Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitatio…

ConvectionAtmospheric ScienceACRIDICON–CHUVA010504 meteorology & atmospheric sciencesMeteorologyResearch AircraftCloud computingPrecipitation Formation010502 geochemistry & geophysics01 natural sciencesMess- und Sensortechnik OPPrecipitation (meteorology)tropical deep convective cloudsRemote SensingHaloAmazoniaCloudsRange (aeronautics)ddc:550Radiative transferPrecipitation0105 earth and related environmental sciencesLidarAnthropogenic AerosolsVerkehrsmeteorologiebusiness.industryAmazon rainforestAtmosphärische SpurenstoffeDeep Convective CloudsProjektmanagement Flugexperimente OPAerosolAtmospheric ThermodynamicsEnvironmental sciencebusinessCloud Life CycleGlobal Precipitation Measurement
researchProduct

Influence of ice crystal shape on retrieval of cirrus optical thickness and effective radius: A case study

2009

Airborne measurements of spectral upwelling radiances (350A¢Â�Â�2200 nm) reflected by cirrus using the Spectral Modular Airborne Radiation measurement sysTem (SMART)-Albedometer were made over land and water surfaces. Based on these data, cloud optical thickness tau and effective radius Reff of the observed cirrus were retrieved. By using different crystal shape assumptions (hexagonal plates, solid and hollow columns, rough aggregates, planar and spatial rosettes, ice spheres, and a mixture of particle habits) in the retrieval, the influence of crystal shape on the retrieved tau and Reff was evaluated. With relative differences of up to 70%, the influence of particle habit on t is larger th…

Atmospheric ScienceMaterials scienceiceSoil SciencecirrusAquatic ScienceOceanographycrystalCrystalOpticsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Physics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and TechnologyEffective radiusLidarIce cloudEcologyIce crystalsFernerkundung der Atmosphärebusiness.industryAtmosphärische SpurenstoffePaleontologyForestryFalconGeophysicsLidarSpace and Planetary ScienceRadianceCIRCLE-2SPHERESCirrusbusinessJournal of Geophysical Research
researchProduct

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano …

2011

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

Atmospheric ScienceEuropean aerosol010504 meteorology & atmospheric sciencesaerosolAerosol radiative forcingClimateclouds010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:Chemistry/dk/atira/pure/sustainabledevelopmentgoals/climate_actionAerosol cloud11. SustainabilitySDG 13 - Climate Actionddc:550particle propertiesEnvironmental policysaturation vapor-pressureschemical-transport modelMiljövetenskapair qualitylcsh:QC1-999General Circulation Model/dk/atira/pure/subjectarea/asjc/1900/1902EUCAARIEELS - Earth Environmental and Life SciencesION-INDUCED NUCLEATIONChemical transport modelMeteorologyEarth & EnvironmentEnergy / Geological Survey NetherlandsSIMULATION CHAMBER SAPHIRnuclei number concentrationSECONDARY ORGANIC AEROSOLpure component propertiesAir quality indexEnvironmental quality0105 earth and related environmental sciencesPARTICLE FORMATION EVENTSAtmosphärische Spurenstoffe[CHIM.CATA]Chemical Sciences/CatalysisCAS - Climate Air and Sustainability[SDE.ES]Environmental Sciences/Environmental and SocietyFalconAerosollcsh:QD1-99913. Climate actionmixed-phase cloudsEnvironmental scienceatmospheric sulfuric-acidEnvironmental Scienceslcsh:Physics
researchProduct

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO

2017

Abstract The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combi…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologysatellitecontrail cirruscirrus010501 environmental sciences01 natural sciencesmodellingML-CIRRUSRange (aeronautics)ddc:550Wolkenphysik0105 earth and related environmental sciencesLidarFernerkundung der AtmosphäreVerkehrsmeteorologieAtmosphärische SpurenstoffeTrace gasAerosolLidarMiddle latitudesHALOEnvironmental scienceCirrusSatelliteHaloaircraft measurementsBulletin of the American Meteorological Society
researchProduct

Sensitivities of Amazonian clouds to aerosols and updraft speed

2017

Abstract. The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly poll…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencesMeteorologyAmazonianCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud basecloudmicrophysicsWolkenphysikAerosolupdraft0105 earth and related environmental sciencesAmazon rainforestbusiness.industry15. Life on landMETEOROLOGIA FÍSICAlcsh:QC1-999AerosolEffective diameterlcsh:QD1-99913. Climate actionLiquid water contentEnvironmental sciencebusinesslcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – aerosol properties and black carbon mixing state

2014

Abstract. During the CONCERT 2011 field experiment with the DLR research aircraft Falcon, an enhanced aerosol layer with particle linear depolarization ratios of 6–8% at 532 nm was observed at altitudes above 10 km over northeast Germany on 16 September 2011. Dispersion simulations with HYSPILT suggest that the elevated aerosol layer originated from the Pagami Creek forest fire in Minnesota, USA, which caused pyro-convective uplift of particles and gases. The 3–4 day-old smoke plume had high total refractory black carbon (rBC) mass concentrations of 0.03–0.35 μg m−3 at standard temperature and pressure (STP) with rBC mass equivalent diameter predominantly smaller than 130 nm. Assuming a cor…

Atmospheric ScienceMicrophysicsChemistryaerosolAtmosphärische Spurenstoffemedicine.disease_causeAtmospheric scienceslcsh:QC1-999SootCONCERT 2011FalconPlumeAerosollcsh:ChemistryTroposphererefractory black carbon (rBC)lcsh:QD1-999medicineRadiative transferParticleStratospherelcsh:Physics
researchProduct

The evolution of microphysical and optical properties of an A380 contrail in the vortex phase

2012

A contrail from a large-body A380 aircraft at cruise in the humid upper troposphere has been probed with in-situ instruments onboard the DLR research aircraft Falcon. The contrail was sampled during 700 s measurement time at contrail ages of about 1–4 min. The contrail was in the vortex regime during which the primary wake vortices were sinking 270 m below the A380 flight level while the secondary wake remained above. Contrail properties were sampled separately in the primary wake at 90 and 115 s contrail age and nearly continously in the secondary wake at contrail ages from 70 s to 220 s. The scattering phase functions of the contrail particles were measured with a polar nephelometer. The …

Atmospheric Science010504 meteorology & atmospheric sciencesWakeAtmospheric sciences01 natural sciences010305 fluids & plasmaslcsh:ChemistryTroposphere0103 physical sciencesclimate impactWake turbulence0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereInstitut für Physik der AtmosphäreNephelometerIce crystalsAtmosphärische SpurenstoffeRadiative forcinglcsh:QC1-999FalconVortexlcsh:QD1-99913. Climate actionEnvironmental sciencePolarlcsh:Physics
researchProduct

Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

2016

Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain …

lcsh:TA715-787530 PhysicsHALOlcsh:Earthwork. Foundationsddc:550Atmosphärische Spurenstoffecloud probe measurementslcsh:TA170-171530 PhysikParticle air Speedlcsh:Environmental engineering
researchProduct

Continuous condensation particle (CP) observations from 1984 through 2009 at Neumayer Station, Antarctica

2011

Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 1/cm**3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 10**3/cm**3 in March. Minimum values below 10**2/cm**3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM) or So…

Neumayer_basedNEUMAYER IIIAir chemistry observatory
researchProduct