0000000000107858

AUTHOR

Sari Mäntynen

showing 10 related works from this author

ICTV Virus Taxonomy Profile: Cystoviridae

2017

The family Cystoviridae includes enveloped viruses with a tri-segmented dsRNA genome and a double-layered protein capsid. The innermost protein shell is a polymerase complex responsible for genome packaging, replication and transcription. Cystoviruses infect Gram-negative bacteria, primarily plant-pathogenic Pseudomonas syringae strains. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Cystoviridae, which is available at http://www.ictv.global/report/cystoviridae.

Cystoviridae0301 basic medicinebacteriophagesGenes Viralviruksetviruses030106 microbiologyGenome ViralVirus ReplicationGenomebakteriofagitICTVtaxonomy03 medical and health sciencesViral envelopeVirologyGram-Negative BacteriaPseudomonas syringaevirusesPseudomonas phage phi6PolymeraseVirus classificationbiologyta1183Bacteriophage phi 6VirologyICTV Virus Taxonomy Profiles3. Good health030104 developmental biologyCapsidViral replicationbiology.proteinPhageRNA ViralCapsid ProteinsJournal of General Virology
researchProduct

Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli

2014

Bacteria possess an intricate internal organization resembling that of the eukaryotes. The complexity is especially prominent at the bacterial cell poles, which are also known to be the preferable sites for some bacteriophages to infect. Bacteriophage PRD1 is a well-known model serving as an ideal system to study structures and functions of icosahedral internal membrane-containing viruses. Our aim was to analyze the localization and interactions of individual PRD1 proteins in its native host Escherichia coli. This was accomplished by constructing a vector library for production of fluorescent fusion proteins. Analysis of solubility and multimericity of the fusion proteins, as well as their …

Cancer ResearchViral proteinvirusesIntracellular SpaceBiologymedicine.disease_causeBacterial cell structureProtein–protein interactionViral Proteins03 medical and health sciencesVirologyEscherichia colimedicineBacteriophage PRD1Escherichia coli030304 developmental biology0303 health sciencesBacteria030302 biochemistry & molecular biologyDNA replicationta1182Protein interactionsFusion proteinVirus assemblyCell biologyConfocal microscopyProtein TransportInfectious DiseasesMembrane proteinVirion assemblyMembrane virusVirus Research
researchProduct

Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1.

2015

AbstractBacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diff…

assemblychaperoninvirusesMutantfluorescence recovery after photobleachingViral Nonstructural Proteinsmedicine.disease_causeVirus ReplicationChaperoninHost-Parasite InteractionsBacteriophagebacteriophageVirologymedicineEscherichia colifluorescent proteinBacteriophage PRD1Escherichia colimembrane virusMicroscopy Confocalbiologyprotein localisationVirus Assemblyta1182Fluorescence recovery after photobleachingGroESChaperonin 60biology.organism_classificationFusion proteinGroEL3. Good healthCell biologyVirology
researchProduct

New enveloped dsRNA phage from freshwater habitat.

2015

Cystoviridae is a family of bacteriophages with a tri-segmented dsRNA genome enclosed in a tri-layered virion structure. Here, we present a new putative member of the Cystoviridae family, bacteriophage ϕNN. ϕNN was isolated from a Finnish lake in contrast to the previously identified cystoviruses, which originate from various legume samples collected in the USA. The nucleotide sequence of the virus reveals a strong genetic similarity (~80 % for the L-segments, ~55 % for the M-segments and ~84 % for the S-segments) to Pseudomonas phage ϕ6, the type member of the virus family. However, the relationship between ϕNN and other cystoviruses is more distant. In general, proteins located in the int…

CystoviridaevirusesMolecular Sequence DataFresh Waterfreshwater habitatsGenomeVirusBacteriophage03 medical and health sciencesVirologyPseudomonasSequence Homology Nucleic AcidCluster AnalysisBacteriophagesFinlandPhylogeny030304 developmental biologyGenetics0303 health sciencesbiology030306 microbiologyta1183ta1182Bacteriophage phi 6Nucleic acid sequenceSequence Analysis DNAbiology.organism_classificationVirologyRNA silencingLakesMolecular virologyRNA ViralRecombinationThe Journal of general virology
researchProduct

Virus found in a boreal lake links ssDNA and dsDNA viruses.

2017

Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limite…

0301 basic medicineBACTERIALviruksetProtein ConformationviruseslipiditGenomechemistry.chemical_compoundProtein structureBINDINGVIRAL UNIVERSE1183 Plant biology microbiology virologyGeneticsMultidisciplinaryCRYOELECTRON MICROSCOPYBiological Sciencesboreaalinen vyöhykeCapsidViral evolutionCAPSID PROTEINLineage (genetic)030106 microbiologyGENOMESDNA Single-Strandedcryo-electron microscopyGenome ViralBiologyPROTEIN STRUCTURESjärvetFlavobacteriumVirusbakteriofagitlipids03 medical and health sciencesCapsidPhylogeneticsBacteriophage PRD1structuregenometa1182DNA VirusesDNAEVOLUTIONLakes030104 developmental biologychemistryperimäCapsid ProteinsCOMMUNITIESDNAProceedings of the National Academy of Sciences of the United States of America
researchProduct

Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage.

2013

Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid archi…

Models MolecularProtein ConformationViral proteinLineage (evolution)virusesCrystallography X-Raymedicine.disease_causeArticleVirusViral AssemblyBacteriophage03 medical and health sciencesProtein structureStructural BiologymedicineBacteriophagesMolecular Biology030304 developmental biologySequence (medicine)0303 health sciencesbiology030306 microbiologyCryoelectron Microscopyta1183ta1182biology.organism_classificationVirology3. Good healthCapsidEvolutionary biologyCapsid ProteinsCrystallizationStructure (London, England : 1993)
researchProduct

Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology

2019

Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformati…

0301 basic medicineArchaeal VirusesModels Molecularcorticoviridaeviruksetviruses030106 microbiologyPopulationlcsh:QR1-502lipid-containing bacteriophagevirus–host interactionReviewGenomeViruslcsh:MicrobiologybakteriofagitEvolution Molecular03 medical and health sciencesViral genome packagingplasmaviridaetectiviridaeVirologyBacteriophage PRD1Bacteriophageseducationvirus evolutioneducation.field_of_studyMembranesbiologyvirus-host interactionVirus Assemblyta1183Virionta1182Archaeal Virusescystoviridaebiology.organism_classificationVirology030104 developmental biologyInfectious DiseasesPlasmaviridaeCapsidViral evolutionDNA ViralCapsid ProteinsViruses
researchProduct

ICTV Virus Taxonomy Profile : Finnlakeviridae

2020

Finnlakeviridae is a family of icosahedral, internal membrane-containing bacterial viruses with circular, single-stranded DNA genomes. The family includes the genus, Finnlakevirus, with the species, Flavobacterium virus FLiP. Flavobacterium phage FLiP was isolated with its Gram-negative host bacterium from a boreal freshwater habitat in Central Finland in 2010. It is the first described single-stranded DNA virus with an internal membrane and shares minimal sequence similarity with other known viruses. The virion organization (pseudo T=21 dextro) and major capsid protein fold (double-β-barrel) resemble those of Pseudoalteromonas phage PM2 (family Corticoviridae), which has a double-stranded …

taxonomysingle-stranded DNA phageviruksetvirusessystematiikka (biologia)flavobacterium phage FLiPICTV reportFinnlakeviridaebakteriofagiticosahedral membrane-containing virus
researchProduct

Something old, something new : exploring membrane-containing bacteriophages

2016

Cystoviridaesaperonitrakenneviruksetvirus assemblymembrane-containing virusbakteriofagitfluoresenssimikroskopiassDNA phagevirologiaperimäkalvotchaperonin complexproteiinitbacteriophage PRD1fluorescent fusion proteinkapsidi
researchProduct

Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli

2014

Bacteria possess an intricate internal organization resembling that of the eukaryotes. The complexity is especially prominent at the bacterial cell poles, which are also known to be the preferable sites for some bacteriophages to infect. Bacteriophage PRD1 is a well-known model serving as an ideal system to study structures and functions of icosahedral internal membrane-containing viruses. Our aim was to analyze the localization and interactions of individual PRD1 proteins in its native host Escherichia coli. This was accomplished by constructing a vector library for production of fluorescent fusion proteins. Analysis of solubility and multimericity of the fusion proteins, as well as their …

Confocal microscopykonfokaalimikroskopiabakteeriMembrane virusvirusesproteiinien vuorovaikutuksetKalvollinen virusProtein interactionsVirus assemblybakteerit
researchProduct