0000000000109754
AUTHOR
I. Oikonomou
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural ne…
The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility
Abstract:We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284 control subjects and establish a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 independent associations within the extended MHC. We used an ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we do find enrichment for MS genes in these brain -…