0000000000110752

AUTHOR

I. Strojek

showing 5 related works from this author

Effects of weakly coupled channels on quasielastic barrier distributions

2009

Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For $^{20}\mathrm{Ne}+^{90}\mathrm{Zr}$, we have observed the barrier structures expected for the highly deformed neon projectile; however, for $^{20}\mathrm{Ne}+^{92}\mathrm{Zr}$, we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing of the barrier distribution and a consequent reduction in the ``resolving power'' o…

PhysicsNuclear and High Energy PhysicsQuasielastic scattering010308 nuclear & particles physicschemistry.chemical_elementFusion barrier[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNeonDistribution (mathematics)chemistry0103 physical sciencesQuasiparticleAbsorption (logic)Atomic physics010306 general physicsNuclear Experiment
researchProduct

Weak channels in backscattering of20Ne onnatNi,118Sn, and208Pb

2012

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for ${}^{20}$Ne ions backscattered from ${}^{\mathrm{nat}}$Ni, ${}^{118}$Sn, and ${}^{208}$Pb targets at near-barrier energies. The $Q$ value spectrum in the case of ${}^{208}$Pb target has been determined too. The transfer channels appear to be especially important for ${}^{208}$Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations.

PhysicsNuclear and High Energy PhysicsCoulomb barrierAtomic physicsIonPhysical Review C
researchProduct

Examination of the influence of transfer channels on the barrier height distribution: Scattering ofNe20onNi58,Ni60, andNi61at near-barrier energies

2016

Background: It was suggested that the shape of the barrier height distribution can be determined not only by strong reaction channels (collective excitations) but also by weak channels such as transfers and/or noncollective excitations.Purpose: The study of the barrier height distributions for the $^{20}\mathrm{Ne}+\phantom{\rule{0.16em}{0ex}}^{58,60,61}\mathrm{Ni}$ systems requires information on transfer cross sections at near-barrier energies.Methods: A measurement of the cross sections for various transfer channels at a backward angle (142 degrees), at a near-barrier energy was performed. Identification of products was based on time-of-flight and $\mathrm{\ensuremath{\Delta}}E\text{\ens…

PhysicsStripping (chemistry)010308 nuclear & particles physicsScattering01 natural sciencesShape of the distributionTransfer (group theory)Angular distributionDistribution (mathematics)0103 physical sciencesQuasiparticleAtomic physics010306 general physicsEnergy (signal processing)Physical Review C
researchProduct

Examination of the influence of transfer channels on the barrier height distribution: Scattering of 20Ne on 58Ni, 60Ni, and 61Ni at near-barrier ener…

2016

Background: It was suggested that the shape of the barrier height distribution can be determined not only by strong reaction channels (collective excitations) but also by weak channels such as transfers and/or noncollective excitations. Purpose: The study of the barrier height distributions for the 20Ne + 58,60,61Ni systems requires information on transfer cross sections at near-barrier energies. Methods: A measurement of the cross sections for various transfer channels at a backward angle (142 degrees), at a near-barrier energy was performed. Identification of products was based on time-of-flight and E-E methods. A measurement of the angular distribution of α stripping in the 20Ne + 61Ni s…

heavy-ion fusionnuclear scatteringparticle transferneonnikkeli
researchProduct

Weak channels in backscattering of ^{20}Ne on ^{nat}Ni, ^{118}Sn, and ^{208}Pb

2012

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for 20Ne ions backscattered from natNi, 118Sn, and 208Pb targets at near-barrier energies. The Q value spectrum in the case of 208Pb target has been determined too. The transfer channels appear to be especially important for 208Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations. peerReviewed

Theoretical nuclear physics
researchProduct