0000000000113776

AUTHOR

Mary Casa-villegas

0000-0002-6631-522x

Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis

Abstract A prevalent procedure for the production of second generation bioethanol makes use of engineered yeast strains capable to hydrolyze cellobiose either in the cytosol or extracellularly. These two approaches have been compared in this study. For intracellular cellobiose hydrolysis, we initially tested three recombinant Saccharomyces cerevisiae strains that produced different cytosolic β-glucosidases and the cellodextrin transporter Po_CdtC from Penicillium oxalicum . The strain coexpressing Po_CdtC and the β-glucosidase from Neurospora crassa (NcBgl) showed the highest cellobiase activity but its growth in cellobiose was limited by sugar intake. A search of alternative cellobiose per…

research product

Synthesis of Isomaltooligosaccharides by Saccharomyces cerevisiae Cells Expressing Aspergillus niger α‑Glucosidase

The α-glucosidase encoded by the aglA gene of Aspergillus niger is a secreted enzyme belonging to family 31 of glycoside hydrolases. This enzyme has a retaining mechanism of action and displays transglycosylating activity that makes it amenable to be used for the synthesis of isomaltooligosaccharides (IMOs). We have expressed the aglA gene in Saccharomyces cerevisiae under control of a galactose-inducible promoter. Recombinant yeast cells expressing the aglA gene produced extracellular α-glucosidase activity about half of which appeared cell bound whereas the other half was released into the culture medium. With maltose as the substrate, panose is the main transglycosylation product after 8…

research product