0000000000113948

AUTHOR

Y. Echegoyen

High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint

Abstract Looking genuinely at nature, nanofibers often serve as a basic platform where either organic or inorganic components are built upon. The fiber structure exhibits, from a structural point of view, the intrinsic ability to mechanically reinforce materials but also the less well-known property of enhancing the barrier performance of polymer matrices when applied smartly. To reproduce and tailor this extraordinary nature's design, a reliable technology that is able to fabricate fiber nanostructures from a variety of materials with size and size distribution control and composition flexibility is highly desirable. In addition, if this technology could allow nanofiber shortening to achie…

research product

Effect of graphene nanoplatelets on the dielectric permittivity and segmental motions of electrospun poly(ethylene-co-vinyl alcohol) nanofibers

The influence of the addition of graphene nanoplatelets (GNPs) on the intra/inter – molecular segmental motions of poly(ethylene-co-vinyl alcohol) (EVOH) was assessed by means of dielectric thermal analysis (DETA). The relaxation spectra were studied in terms of the dielectric permittivity (ε′) and the dielectric loss tangent (tan δ) at wide ranges of frequency (from 10−2 to 107 Hz) and temperature (from -150 to 140 °C). Two relaxation zones were disthinguished. Below the glass transition temperature (Tg), two β-relaxations were observed, which are characteristic local modes of mobility of the EVOH side groups, and related to the influence of the different surroundings of ethylene or vinyl …

research product

Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications

Graphene nanoplatelets (GNPs) were synthetized from graphite powder and, thereafter, embedded in poly(ethylene-co-vinyl alcohol) (EVOH) fibers by electrospinning in the 0.1&ndash

research product