0000000000114075
AUTHOR
L. Djambazov
A Demonstrator for a new Axial PET Concept
In PET imaging, improving sensitivity while maintaining very good spatial resolution is crucial. To achieve this goal, we propose a novel concept of PET scanner, with axially arranged crystals, providing a high sensitivity and a 3D reconstruction of the gamma interaction point. The trans-axial coordinate is given by the crystal hit, while the z coordinate is reconstructed by the weighted distribution of light escaping the crystal and entering into an array of Wave Length Shifting (WLS) strips interleaving the crystal layers. This novel configuration allows full identification of Compton interactions in the crystals that can be included in image reconstruction thus enhancing the sensitivity.…
The AX-PET demonstrator—Design, construction and characterization
Abstract Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end …
Performance of the AX-PET Demonstrator
The goal of the AX-PET project is to build and test a demonstrator for a high resolution, high sensitivity PET scanner, based on a novel geometrical concept of long axially oriented crystals. The demonstrator comprises two PET modules used in coincidence. The two modules have been constructed and characterized (both individually and in coincidence) in dedicated test setups, with point-like sources. Good performance in terms of energy, spatial and timing resolution have been demonstrated. First measurements with extended phantoms filled with FDG-radiotracers have been recently performed.
Development of a High Precision Axial 3-D PET for Brain Imaging
We describe a PET device based on a novel method to extract the coordinates of the interaction point of the 511keV γ rays from 100 mm long and thin LYSO (Lutetium Yttrium OxyorthoSilicate) scintillator bars, positioned axially in the tomograph. The coordinate along the hit crystal is measured by using a hodoscope of Wave Length Shifting (WLS) plastic strips mounted perpendicularly to each plane of scintillators. As photodetectors, new Geiger mode Avalanche PhotoDetectors (G-APDs) with integrated electronics are being used to detect both the hit crystal in a block (x and y coordinates) and the interaction point in the crystal (z coordinate) through the light escaping from the crystal and tra…
AX-PET: Concept, proof of principle and first results with phantoms
AX-PET is a novel PET concept based on long crystals axially arranged and orthogonal Wavelength shifter (WLS) strips, both individually readout by Geiger-mode Avalanche Photo Diodes (G-APD). Its design was conceived in order to reduce the parallax error and simultaneously improve spatial resolution and sensitivity. The assessment of the AX-PET concept and potential was carried out through a set of measurements comprising individual module characterizations and scans in coincidence mode of point-like and extended sources. The estimated energy and spatial resolutions from point-like measurements are R FWHM =11.6% (at 511 keV) and 1.7–1.9 mm (FWHM) respectively as measured with point-like sour…
The AX-PET Concept: New Developments And Tomographic Imaging
The Axial PET (AX-PET) concept proposes a novel detection geometry for PET, based on layers of long scintillating crystals axially aligned with the bore axis. Arrays of wavelength shifting (WLS) strips are placed orthogonally and underneath the crystal layers; both crystals and strips are individually readout by G-APDs. The axial coordinate is obtained from the WLS signals by means of a Center-of-Gravity method combined with a cluster algorithm. This design allows spatial resolution and sensitivity to be decoupled and thus simultaneously optimized. In this work we present the latest results obtained with the 2-module AX-PET scanner prototype, which consists of 6 radial layers of 8 LYSO crys…
AX-PET: A novel PET detector concept with full 3D reconstruction
We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The ach…