0000000000115449

AUTHOR

D. Weisshaar

showing 9 related works from this author

"Safe" Coulomb excitation of 30Mg.

2004

We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-ene…

[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Coulomb excitationFOS: Physical sciencesPhysics::Accelerator PhysicsNuclear Physics - Experiment25.70.De 27.30.+t 21.10.ReNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentCollective levels20 < A < 38Radioactive beamsPhysical review letters
researchProduct

Measurement of key resonance states for the P30(p,γ)S31 reaction rate, and the production of intermediate-mass elements in nova explosions

2017

We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P30(p,γ)S31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P30(d,n)S31 reaction was studied in inverse kinematics using the GRETINA γ -ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicat…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar Astrophysicslcsh:Physicslcsh:QC1-999Physics Letters B
researchProduct

Evolution of collectivity in the78Ni region: Coulomb excitation of74Ni at intermediate energies.

2014

The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic ob- servables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the ef- fective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope ( 64 Ni) towards the 78 Ni nucleus where the large neu…

PhysicsStable isotope ratioPhysicsQC1-999Nuclear TheoryShell (structure)Coulomb excitationPhysics and Astronomy (all)medicine.anatomical_structureIsospinmedicineNeutronTensorAtomic physicsNuclear ExperimentNucleus
researchProduct

Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

2009

Experience NSCL; International audience; We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30S, 36K and 37Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p, ) reaction rate under rp-process conditions.

Nuclear reactionPhysicsHistoryProton010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Nuclear TheoryCyclotronrp-process[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]7. Clean energy01 natural sciencesComputer Science ApplicationsEducationlaw.inventionNuclear physicsIsotopes of potassiumlawNucleosynthesis0103 physical sciencesr-processAtomic physics010306 general physicsNuclear ExperimentRadioactive decay
researchProduct

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

Nuclear and High Energy Physicsastro-ph.SRNuclear TheoryExplosive materialnucl-thStrong interactionnucl-ex01 natural sciencesIonReaction ratesymbols.namesake0103 physical sciencesCoulombMirror nuclei010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsradioactive beams010308 nuclear & particles physicsshell modellcsh:QC1-999Astrophysics - Solar and Stellar AstrophysicsExcited statesymbolsX-ray burststransfer reactionsAtomic physicsHamiltonian (quantum mechanics)ydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct

Determining therp-Process Flow throughNi56: Resonances inCu57(p,γ)Zn58Identified with GRETINA

2014

An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray burst…

PhysicsReaction rateChemical substanceSuperconducting cyclotronOrders of magnitude (time)Radiative captureFlow (psychology)Analytical chemistryGeneral Physics and Astronomyrp-processNuclear ExperimentPhysical Review Letters
researchProduct

New developments on the recoil distance doppler-shift method

2010

Absolute transition probabilities are fundamental observables for nuclear structure. The recoil-distance-Doppler-shift (RDDS) technique, also called plunger technique, is a well established tool for the determination of these important experimental quantities via the measurement of lifetimes of excited nuclear states. Nowadays nuclear structure investigations are concentrated on exotic nuclei which are often produced with extremely small cross sections or with very low beam intensities. In order to use the RDDS technique also for the investigation of very exotic nuclei this method has to be adapted to the specific needs of these special reactions. This article gives an overview on recent RD…

PhysicsHistoryProjectileNuclear TheoryNuclear structureObservableCoulomb excitationComputer Science ApplicationsEducationNuclear physicsRecoilExcited stateCoulombPhysics::Accelerator PhysicsAtomic physicsNuclear ExperimentBeam (structure)Journal of Physics: Conference Series
researchProduct

Low-lying level structure of Cu56 and its implications for the rp process

2017

The low-lying energy levels of proton-rich Cu56 have been extracted using in-beam γ-ray spectroscopy with the state-of-the-art γ-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu56 serve as resonances in the Ni55(p,γ)Cu56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q=639±82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni55(p,γ)Cu56. We find that, with this new rate, the …

Physics010308 nuclear & particles physicsQ valuerp-process01 natural sciencesNuclear physicsMass formulaExcited state0103 physical sciencesLevel structureIsobaric processAtomic physics010306 general physicsSpectroscopyMultipletPhysical Review C
researchProduct

Single-particle shell strengths near the doubly magic nucleus Ni and the Ni( , ) Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu−$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA γ-array. Spectroscopic factors are compared with new shell-model calculations using a full pf model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constraints on the…

Physics Letters
researchProduct