0000000000115497

AUTHOR

Reinhard Schneider

Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water

This work concerns ZnO nanoparticles (NPs), with sizes of tens of nm, produced by ablation with a pulsed Nd:YAG laser of a Zn plate in H2O. TEM images evidence the formation of nanoparticles with sizes of tens of nm. Moreover, HRTEM images and Raman spectra show that the distance between the crystalline planes and the vibrational modes are consistent with ZnO nanocrystal in wurtzite structure. Their optical properties are characterized by two emission bands both excited above the energy gap (3.4 eV): the first at 3.3 eV is associated with excitons recombination, the second at 2.2 eV is proposed to originate from a singly ionized oxygen vacancy. The green emission is independent of water pH,…

research product

Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline Structure

Nitrogen content in carbon dots (CDs) plays a crucial role both on the structure and on the optical properties. We synthesized two distinct families of CDs which differ both in structure and in optical emission, demonstrating how nitrogen determines the structure and the optical properties of N-CDs in two main cases: low content and high content of nitrogen. While the low-nitrogen-content family is characterized by blue-emitting nanoparticles with a N-doped hexagonal C-graphite crystalline core structure and a complex surface structure, the high-nitrogen-content family is composed of nanoparticles behaving as dual emitters (blue and green) with a hexagonal β-C3N4crystalline core structure a…

research product

Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning.

Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor qua…

research product

Luminescence mechanisms of defective ZnO nanoparticles.

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…

research product

β-C3N4 Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity

Carbon nanodots are known for their appealing optical properties, especially their intense fluorescence tunable in the visible range. However, they are often affected by considerable issues of optical and structural heterogeneity, which limit their optical performance and limit the practical possibility of applying these nanoparticles in several fields. Here we developed a synthesis method capable of producing a unique variety of carbon nanodots displaying an extremely high visible absorption strength (ε > 3 × 106 M(dot)−1 cm−1) and a high fluorescence quantum yield (73%). The high homogeneity of these dots reflects in many domains: morphological (narrow size distribution), structural (q…

research product

Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO2 and amorphous fully oxidized SiO2, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescen…

research product

Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure

Carbon nanodots are a class of nanoparticles with variable structures and compositions which exhibit a range of useful optical and photochemical properties. Since nitrogen doping is commonly used to enhance the fluorescence properties of carbon nanodots, understanding how nitrogen affects their structure, electronic properties and fluorescence mechanism is important to fully unravel their potential. Here we use a multi-technique approach to study heavily nitrogen-doped carbon dots synthesized by a simple bottom-up approach and capable of bright and color-tunable fluorescence in the visible region. These experiments reveal a new variant of optically active carbonaceous dots, that is a nanocr…

research product

Making sense of big data in health research: {T}owards an {EU} action plan

Genome medicine 8(1), 71 (2016). doi:10.1186/s13073-016-0323-y

research product