0000000000115834

AUTHOR

Guillermo Guenechea

0000-0001-7679-0895

showing 3 related works from this author

Lentiviral-Mediated Gene Therapy in Fanconi Anemia-A Mice Reveals Long-Term Engraftment and Continuous Turnover of Corrected HSCs

2015

International audience; Fanconi anemia is a DNA repair-deficiency syndrome mainly characterized by cancer predisposition and bone marrow failure. Trying to restore the hematopoietic function in these patients, lentiviral vector-mediated gene therapy trials have recently been proposed. However, because no insertional oncogenesis studies have been conducted so far in DNA repair-deficiency syndromes such as Fanconi anemia, we have carried out a genome-wide screening of lentiviral insertion sites after the gene correction of Fanca-/- hematopoietic stem cells (HSCs), using LAM-PCR and 454-pyrosequencing. Our studies first demonstrated that transduction of Fanca-/- HSCs with a lentiviral vector d…

DNA RepairDNA repair[SDV]Life Sciences [q-bio]Genetic enhancementGenetic VectorsBiologymedicine.disease_causePolymerase Chain ReactionViral vectorCell LineMiceFanconi anemiaTransduction Genetichemic and lymphatic diseasesDrug DiscoveryGeneticsmedicineAnimalsMolecular BiologyGenetics (clinical)Mice KnockoutFanconi Anemia Complementation Group A ProteinLentivirusBone marrow failureGenetic Therapymedicine.diseaseHematopoietic Stem CellsFANCA3. Good health[SDV] Life Sciences [q-bio]Fanconi AnemiaCancer researchMolecular MedicineStem cellCarcinogenesis
researchProduct

Ex vivo expansion of umbilical cord blood (UCB) CD34+ cells alters the expression and function of α4β1 and α5β1 integrins

2001

We have investigated the influence of ex vivo expansion of human CD34+ cord blood cells on the expression and function of adhesion molecules involved in the homing and engraftment of haematopoietic progenitors. Ex vivo expansion of umbilical cord blood CD34+ cells for 6 d in the presence of interleukin 3 (IL-3), IL-6 and stem cell factor (SCF) or IL-11, SCF and Flt-3L resulted in increased expression of α4, α5, β1, αΜM and β2 integrins. However, a significant decrease in the adhesion of progenitor cells to fibronectin was observed after the ex vivo culture (adhesion of granulocyte-macrophage colony-forming units (CFU-GM) was 22 ± 4% in fresh cells versus 5 ± 2% and 2 ± 2% in each combinatio…

HaematopoiesisCell adhesion moleculeCord bloodImmunologyCD34HematologyBiologyProgenitor cellStem cellMolecular biologyEx vivoInterleukin 3British Journal of Haematology
researchProduct

GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage.

2021

© 2021 The Authors.

0301 basic medicineTelomeraseDNA damageApoptosismacromolecular substancesBleomycintelomeraseBiochemistryPulmonary fibrosisAlveolar cellsAlveolar cells03 medical and health scienceschemistry.chemical_compoundIdiopathic pulmonary fibrosisBleomycin0302 clinical medicineFibrosisPulmonary fibrosisGeneticsmedicineHumansMolecular BiologyTelomeraseLungLungNanopartículespulmonary fibrosisChemistrytechnology industry and agricultureFibrosi pulmonaralveolar cellsrespiratory systemmedicine.diseaseOxidative Stress030104 developmental biologymedicine.anatomical_structureAlveolar Epithelial CellsCancer researchGSE4NanoparticlesCollagenPeptides030217 neurology & neurosurgeryBiotechnologyDNA DamageFASEB journal : official publication of the Federation of American Societies for Experimental BiologyREFERENCES
researchProduct