0000000000116352

AUTHOR

Marco Trifuoggi

0000-0002-6424-8676

showing 5 related works from this author

Molecular Alterations in Spermatozoa of a Family Case Living in the Land of Fires. A First Look at Possible Transgenerational Effects of Pollutants.

2020

In our previous work, we reported alterations in protamines/histones ratio, in DNA binding of these proteins and their involvement in DNA oxidative damage in 84% of the young men living in the Land of Fires. In the present work, we extended our findings, evaluating any alterations in spermatozoa of a family case, a father and son, living in this area, to also give a first look at the possibility of transgenerational inherited effects of environmental contaminants on the molecular alterations of sperm nuclear basic proteins (SNBP), DNA and semen parameters. In the father and son, we found a diverse excess of copper and chromium in the semen, different alterations in SNBP content and low DNA …

0301 basic medicineMaleProtamineprotein-DNA binding010501 environmental sciences01 natural sciencesAntioxidantslcsh:ChemistryOxidative damageHistoneschemistry.chemical_compoundProtaminesSettore BIO/06 - Anatomia Comparata E CitologiaLand of Firesheavy metalslcsh:QH301-705.5SpectroscopyGeneticsbiologySperm CountSperm Motility Nuclear Proteinhuman protaminestransgenerational effectsHuman protamineNuclear ProteinsGeneral MedicineMiddle AgedSpermatozoaComputer Science ApplicationsDNA oxidative damageHistoneHeavy metalSperm MotilityEnvironmental PollutantsAntioxidantAdolescentDNA damageSemenEMSACatalysisArticleInorganic Chemistry03 medical and health sciencesTransgenerational epigeneticsSemenHumansPhysical and Theoretical ChemistryMolecular BiologyEnvironmental PollutantLand of FireInfertility Male0105 earth and related environmental sciencesPollutantOrganic ChemistryTransgenerational effectEnvironmental ExposureHydrogen PeroxideProtaminehuman spermatozoaSemen Analysis030104 developmental biologyFertilitylcsh:Biology (General)lcsh:QD1-999chemistrybiology.proteinDNADNA DamageInternational journal of molecular sciences
researchProduct

Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtu…

2020

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., alpha-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly…

0301 basic medicineAgingAntioxidantUbiquinonemedicine.medical_treatmentmitochondrial nutrientsReviewoptic neuropathiesType 2 diabetesPharmacologyMitochondrionmedicine.disease_causeAntioxidantslcsh:Chemistrychemistry.chemical_compound0302 clinical medicineCardiovascular Diseaseoxidative stressaging-related disorderslcsh:QH301-705.5SpectroscopyThioctic AcidMitochondrial nutrientNeurodegenerative DiseasesGeneral MedicineComputer Science ApplicationsMitochondriaCardiovascular DiseasesAntioxidantmedicine.drugHumanCatalysisAging-related disorderCell LineInorganic Chemistry03 medical and health sciencesCarnitinemedicineAnimalsHumansMicrobiomeCarnitinePhysical and Theoretical ChemistryMolecular BiologyCoenzyme Q10business.industryAnimalOrganic ChemistryOxidative Stremedicine.diseaseClinical trial030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistryDiabetes Mellitus Type 2MicrobiomeOptic neuropathiebusinessMitochondrial dysfunction030217 neurology & neurosurgeryOxidative stress
researchProduct

Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management

2021

Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mi…

0301 basic medicineMitochondrial DNAMitochondrial DiseasesMitomycinMitochondrial diseaseClinical BiochemistryDiepoxybutaneReview ArticleMitochondrionBiologyBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineFanconi anemiaFANCGmedicineHumansClastogenCarnitinelcsh:QH301-705.5Coenzyme Q10lcsh:R5-920ProteinOrganic ChemistryMitochondrial nutrientProteinsmedicine.diseaseMitochondrial diseaseFanconi AnemiaPhenotypeClastogens030104 developmental biologylcsh:Biology (General)chemistryProoxidant stateCancer researchMitochondrial nutrientsMitochondrial dysfunctionlcsh:Medicine (General)030217 neurology & neurosurgeryHumanmedicine.drugRedox Biology
researchProduct

Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies

2021

Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…

0301 basic medicineAtaxiaUbiquinoneAlpha-Lipoic AcidDiseaseMitochondrionIron Chelating AgentsBioinformaticsAntioxidantsLinoleic Acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCarnitinePhysiology (medical)AnimalsHumansMedicineDeferiproneCarnitineInner mitochondrial membraneCoenzyme Q10biologyAnimalbusiness.industryBiochemistry (medical)Public Health Environmental and Occupational HealthGeneral MedicineMitochondriaIron Chelating Agent030104 developmental biologyLinoleic AcidschemistryFriedreich Ataxia030220 oncology & carcinogenesisFrataxinbiology.proteinAntioxidantmedicine.symptombusinessHumanmedicine.drugTranslational Research
researchProduct

Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction

2020

Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature—namely MDF—may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and…

0301 basic medicinePhysiologymedicine.medical_treatmentClinical Biochemistrymitochondrial nutrientsDiseaseType 2 diabetesReviewBioinformaticsmedicine.disease_causeBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoFanconi anemiamitochondrial dysfunctionmedicineoxidative stressMolecular Biologyfanconi anemiaCoenzyme Q10business.industrylcsh:RM1-950Mitochondrial nutrientCell Biologymedicine.diseasePhenotype030104 developmental biologylcsh:Therapeutics. Pharmacologychemistry030220 oncology & carcinogenesisOxidative stretype 2 diabetesbusinessAdjuvantOxidative stressAntioxidants
researchProduct