0000000000116820

AUTHOR

Felix H. Schacher

showing 7 related works from this author

Guided hierarchical co-assembly of soft patchy nanoparticles.

2013

Different polymers can be used in combination to produce coexisting nanoparticles of different symmetry and tailored to co-assemble into well-ordered binary and ternary hierarchical structures. There is considerable practical interest in developing the tools to fabricate multicomponent artificial systems that mimic the hierarchical ordering seen in the natural world — complex biomaterials can be assembled from the simple but precisely defined molecular building blocks. Andre Groschel and colleagues have developed a bottom-up approach that's a step in that direction. Previously they designed simple linear polymers that self-assemble in solution to produce monodisperse nanoparticles with well…

Length scaleMultidisciplinaryMaterials scienceMicrocontact printingMolecular self-assemblyParticleNanoparticleNanotechnologySelf-assemblyTernary operationSmart materialNature
researchProduct

Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach

2019

Despite the first successful applications of nonviral delivery vectors for small interfering RNA in the treatment of illnesses, such as the respiratory syncytial virus infection, the preparation of a clinically suitable, safe, and efficient delivery system still remains a challenge. In this study, we tackle the drawbacks of the existing systems by a combined experimental-computational in-depth investigation of the influence of the polymer architecture over the binding and transfection efficiency. For that purpose, a library of diblock copolymers with a molar mass of 30 kDa and a narrow dispersity (Đ1.12) was synthesized. We studied in detail the impact of an altered block size and/or compos…

Small interfering RNAPolymers and PlasticsBioengineering02 engineering and technologyComputational biologyBiology010402 general chemistry01 natural sciencesVirusBiomaterialsDrug Delivery SystemsText miningMaterials ChemistryHumansComputer SimulationRNA Small Interferingbusiness.industryRNA021001 nanoscience & nanotechnology0104 chemical sciencesHEK293 CellsModels ChemicalMCF-7 Cells0210 nano-technologybusinessHeLa CellsBiomacromolecules
researchProduct

Splitting of Surface-Immobilized Multicompartment Micelles into Clusters upon Charge Inversion

2016

International audience; We investigate a morphological transition of surface-immobilized triblock terpolymer micelles: the splitting into well-defined clusters of satellite micelles upon pH changes. The multicompartment micelles are formed in aqueous solution of ABC triblock terpolymers consisting of a hydrophobic polybutadiene block, a weak polyanionic poly(methacrylic acid) block, and a weak polycationic poly(2-(dimethylamino)ethyl methacrylate) block. They are subsequently immobilized on silicon wafer surfaces by dip-coating. The splitting process is triggered by a pH change to strongly basic pH, which goes along with a charge reversal of the micelles. We find that the aggregation number…

Materials scienceMorphology (linguistics)General Physics and Astronomy02 engineering and technologysmart coatings010402 general chemistryMethacrylate01 natural sciencesMicelleAtomic force microscopychemistry.chemical_compoundPolybutadienePolymer chemistryCopolymer[CHIM]Chemical SciencesGeneral Materials Sciencemicelle splittingAqueous solutionAggregation numberABC triblock terpolymerGeneral Engineeringmulticompartment micellescluster formation021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringMethacrylic acidchemistrysurface immobilization0210 nano-technologyACS Nano
researchProduct

Hidden Structural Features of Multicompartment Micelles Revealed by Cryogenic Transmission Electron Tomography

2014

The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic a…

Electron Microscope TomographyMaterials sciencePolymersProton Magnetic Resonance Spectroscopyta221electron tomographyGeneral Physics and AstronomyIonic bondingNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesMicelleCopolymerGeneral Materials ScienceSoft matterMicellesta218ta214ta114interpolyelectrolyte complexesGeneral EngineeringCationic polymerization021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringChromatography GelCryo-electron tomographySelf-assembly0210 nano-technologyACS Nano
researchProduct

Alignment of Tellurium Nanorods via a Magnetization−Alignment− Demagnetization (“MAD”) Process Assisted by an External Magnetic Field

2009

Tellurium (Te) nanorods have been successfully aligned on a solid substrate via a magnetization-alignment-demagnetization ("MAD") process in the presence of an external magnetic field. Te nanorods carrying a poly(tert-butyl methacrylate) shell were first converted into magnetic nanocylinders by assembling magnetite nanoparticles on their surface via a hydrophobic interaction in THF. We demonstrate that, below a critical concentration of the nanoparticles, this assembly process is able to quantitatively tune the magnetite nanoparticles' density on the nanorods in terms of their stoichiometric ratio. Due to the polymer and surfactant on their surface, the formed magnetic nanocylinders are sol…

chemistry.chemical_classificationMaterials scienceDemagnetizing fieldGeneral EngineeringGeneral Physics and Astronomychemistry.chemical_elementNanoparticleNanotechnologyPolymerMethacrylateMagnetic fieldMagnetizationchemistryChemical engineeringGeneral Materials ScienceNanorodTelluriumACS Nano
researchProduct

Young Talents in Polymer Science.

2021

World Wide Webchemistry.chemical_classificationEngineeringPolymers and Plasticschemistrybusiness.industryPolymersOrganic ChemistryMaterials ChemistryPolymerbusinessMacromolecular rapid communications
researchProduct

Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for Efficient in Vivo Photodynamic Therapy

2014

We describe the preparation of well-defined multicompartment micelles from polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was incorporated into the hydrophobic core during self-assembly and served as a model drug and fluorescent probe at the same time. The initial micellar corona is formed by negatively charged PMAA and could be gradually changed to poly(ethylene glycol) (PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA with positively charged poly(ethylene glycol)-block-p…

Poly ethylene glycolMaterials sciencemedicine.medical_treatmentGeneral EngineeringGeneral Physics and AstronomyPhotodynamic therapyMicellePolyethylene Glycolschemistry.chemical_compoundInhibitory Concentration 50chemistryMethacrylic acidMicroscopy Electron TransmissionPhotochemotherapyIn vivoPolymer chemistryPEGylationmedicineGeneral Materials SciencePyridiniumMethyl SulfateMicellesACS nano
researchProduct