0000000000116995

AUTHOR

Enrique Bronchalo

Analysis of Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide

This paper 1 presents a study of the multipactor 2 effect in a partially dielectric-loaded rectangular waveguide. 3 To obtain the simulations presented in this paper, a detailed 4 analysis of the dynamics of the electron inside this waveguide 5 has been performed, taking into account the radio frequency 6 electromagnetic fields propagating in the waveguide and the dc 7 electric field that appears because of the charging of the dielectric 8 layer. This electrostatic field is obtained by computing the electric 9 potential produced by an arbitrary charge distribution on the 10 dielectric layer in a dielectric-loaded waveguide. The electron 11 trajectory is then found by numerically solving the…

research product

Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range

Experimental data of secondary emission yield (SEY) and electron emission spectra of Pt under electron irradiation for normal incidence and primary energies lower than 1 keV are presented. Several relevant magnitudes, as total SEY, elastic backscattering probability, secondary emission spectrum, and backscattering coefficient, are given for different primary energies. These magnitudes are compared with theoretical or semiempirical formulas commonly used in the related literature.

research product

Calculation of the electrostatic field in a dielectric-loaded waveguide due to an arbitrary charge distribution on the dielectric layer

The goal of this paper is to study the electrostatic field due to an arbitrary charge distribution on a dielectric layer in a dielectric-loaded rectangular waveguide. In order to obtain this electrostatic field, the potential due to a point charge on the dielectric layer is solved in advance. The high computational complexity of this problem requires the use of different numerical integration techniques (e.g., Filon, Gauss-Kronrod, Lobatto, …) and interpolation methods. Using the principle of superposition, the potential due to an arbitrary charge distribution on a dielectric layer is obtained by adding the individual contribution of each point charge. Finally, a numerical differentiation o…

research product

Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide

This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric ma…

research product

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

research product

Analysis of the multipactor effect by means of the 3D BI-RME method

Multipactor effect is a well-known phenomenon of RF breakdown in satellite pay-loads which degrades components, generates undesirable harmonics, contributes to power dissipation and increases noise in communications. Traditionally, multipactor has been investigated with the aim of obtaining the so-called multipactor threshold voltage, or to present different multipaction detection methods. Little effort has been devoted, in contrast, to study the problem from a full-wave point of view, thus allowing for the analysis of more complex structures. The main goal of this work is to analyze the interaction between a multipactor current and a realistic microwave cavity by means of a rigorous and ac…

research product