0000000000117088

AUTHOR

Stefan Kurth

Time-dependent density-functional theory of strong-field ionization of atoms by soft x rays

Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.

research product

Correlation effects in bistability at the nanoscale: Steady state and beyond

The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium by an external bias and the nonequilibrium properties are determined by real-time propagation using both time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects are described within a recently proposed adiabatic local density approximation (ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then approximated at the Hartree-Fock (HF), second-Born,…

research product

Real-time switching between multiple steady-states in quantum transport

Creative Commons Attribution License 3.0.

research product

Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model

We study time-dependent electron transport through an Anderson model. The electronic interactions on the impurity site are included via the self-energy approximations at Hartree-Fock (HF), second Born (2B), GW, and T-matrix levels as well as within a time-dependent density functional (TDDFT) scheme based on the adiabatic Bethe-ansatz local density approximation (ABALDA) for the exchange-correlation potential. The Anderson model is driven out of equilibrium by applying a bias to the leads, and its nonequilibrium dynamics is determined by real-time propagation. The time-dependent currents and densities are compared to benchmark results obtained with the time-dependent density matrix renormali…

research product

Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene

arXiv:1403.5408

research product