0000000000117431

AUTHOR

Clara L. Essmann

showing 1 related works from this author

Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR

2014

Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, l…

MaleColorectal cancerAngiogenesisProcollagen-Proline DioxygenaseGeneral Physics and AstronomyApoptosisGrowth inhibitoryBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyHypoxia-Inducible Factor-Proline DioxygenasesGene Knockout Techniqueschemistry.chemical_compoundCell Line TumormedicineAnimalsHumansEgfr signalingHypoxiaCell ProliferationMice KnockoutMultidisciplinaryCell growthGeneral ChemistryHypoxia (medical)Hypoxia-Inducible Factor 1 alpha Subunitmedicine.diseaseMolecular biologyErbB ReceptorsOxygenchemistryApoptosisCancer researchFemalemedicine.symptomGrowth inhibitionGlioblastomaNature Communications
researchProduct