0000000000117482
AUTHOR
Frédéric Demoisson
Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials
International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…
Gas sensing properties of multiwall carbon nanotubes decorated with rhodium nanoparticles
International audience; In the present work, multiwalled carbon nanotubes were decorated with rhodium nanoparticles using a colloidal solution in the post-discharge of an RF atmospheric plasma of argon (Ar) or argon/oxygen (Ar:O 2). The properties of these hybrid materials towards the room temperature detection of NO 2 , C 2 H 4 , CO, C 6 H 6 and moisture were investigated and discussed in view of compositional and morphological studies. It was found that the presence of oxygen in the plasma treatment is essential to significantly enhance the gas response of Rh-decorated multiwalled carbon nanotubes and to avoid response saturation even at low gas/vapor concentrations. These desirable effec…
Contact laws between nanoparticles: the elasticity of a nanopowder
International audience; Studies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e…
Inelastic Light Scattering Contribution to the Study of the Onset of Sintering of a Nanopowder
International audience; The onset of the sintering of 5 nm ZrO2 and TiO2 nanoparticles is investigated by various methods including inelastic light scattering. A special attention is paid to low-frequency Raman spectra where scattering from confined acoustic vibrations and quasielastic scattering manifest. Significant changes are observed between samples sintered at different temperatures or applied forces. A detailed analysis of the spectra enables to follow the variation of the size of the nanoparticles, the surface area, and the formation of internanoparticles necks in the sintered materials. Finally, low-frequency scattering is shown to be more sensitive to the onset of sintering than m…
Influence of the pH on the ZnO nanoparticle growth in supercritical water: Experimental and simulation approaches
Abstract In order to improve the knowledge on the nucleation and the growth mechanisms of metal oxides nanoparticles produced in supercritical water domain, ZnO was used as a “model” material. A continuous process of hydrothermal synthesis was employed to synthesize ZnO nanopowders ( T = 410 °C and P = 305 bar) from Zn(NO 3 ) 2 and KOH solutions with different values of [KOH]/[Zn(II)] ratio from 0 to 8 in order to investigate the pH effect on the growth of ZnO nanocrystallite in terms of size and morphology. The samples were characterized by X-Ray Diffraction and Transmission Electronic Microscopy. ZnO crystal was considered as a cylindrical crystallite with a diameter D and height H . Es…
Thermodynamics of Nanoparticles: Experimental Protocol Based on a Comprehensive Ginzburg-Landau Interpretation
MATERIAUX+SMR:SDA; The effects of surface and interface on the thermodynamics of small particles require a deeper understanding. This step is crucial for the development of models that can be used for decision-making support to design nanomaterials with original properties. On the basis of experimental results for phase transitions in compressed ZnO nanoparticles, we show the limitations of classical thermodynamics approaches (Gibbs and Landau). We develop a new model based on the Ginzburg-Landau theory that requires the consideration of several terms, such as the interaction between nanoparticles, pressure gradients, defect density, and so on. This phenomenological approach sheds light on …
Continuous hydrothermal synthesis of doped barium zirconate powder for PCFC (Protonic Ceramic Fuel Cell) application
International audience; BaZr 1-x M x O 3-d (M=Ce and/or Y) perovskite materials are good potential candidates for Protonic Ceramic Fuel Cell (PCFC) electrolyte due to their remarkable property of protonic conduction at intermediate temperature (400-600°C). Fabbri et al. have reported a protonic conductivity of 2.10-2 S.cm-1 at 600°C for BaCe 0.7 Zr 0.1 Y 0.2 O 3-d [1]. However, the synthesis of these materials requires high temperature (1500°C) by solid state reaction. The hydrothermal synthesis in supercritical water appears then as a way to synthetize perovskite materials at a temperature as low as 400°C. Furthermore, this process allows the formation of nanometric powder. Finally the con…
CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor
International audience; Continuous hydrothermal flow synthesis process has shown great advantages concerning the control of particle size and morphology through the optimization of supercritical water processing parameters. In particular, micromixing is a key issue of the process for controlling the nucleation mechanism. A Computational Fluid Dynamics (CFD) model is suggested for nanoparticle size determination using a population balance approach. Models for reaction kinetics, thermodynamics, nucleation and growth are presented. The effects of base concentration and hydrodynamics are investigated. Results show that the CFD may be valuable simulation tool for controlling the size and the sha…
Hydrothermal growth of ZnO nanostructures in supercritical domain: Effect of the metal salt concentration (Zn(NO3)2) in alkali medium (KOH)
Abstract The metal salt concentration effect on the size and morphology of ZnO NPs was highlighted through its synthesis thanks to a continuous one-step method at 401 ± 15 °C and 306 ± 8 bar. Experiments were performed from Zn(NO3)2 and KOH as reactants in concentration ranges of 10–480 mM and 40–1920 mM, respectively. A constant [KOH]/[Zn(NO3)2] ratio of 4 was fixed in order to maintain a constant pH value between 12.5 and 13.0. The as-prepared NPs were characterized by X-ray diffraction and (high-resolution) transmission electron microscopy. Based on Louer's method, ZnO crystal exhibiting a hexagonal structure was considered as cylinder with a diameter D and a height H. The D/H parameter …
The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide
Different synthesis methods such as homogeneous precipitation at room temperature and supercritical water (T > 647 K and P > 22.1 MPa) were employed for cerium oxide preparation. Additionally, deposition of ceria on silica mesoporous material, SBA-15, was carried out. The obtained materials were characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen physisorption, X-ray photoelectron spectroscopy and CO2 temperature programmed desorption. Considerable variations in physico-chemical properties of the resulting materials were observed. The catalytic activities of pristine cerium oxide and ceria loaded on SBA-15 support were…
Quasi-free nanoparticle vibrations in a highly-compressed ZrO2 nanopowder
Several-nanometer-size mechanical oscillators, or nanoresonators, may complement electronic and optical technologies in future terahertz devices, but they can be useful only if they can be made to ...
Original Supercritical Water Device for Continuous Production of Nanopowders
Well-crystallized ZnO, ZrO2, TiO2, CeO2, Y2O3 and La2O3 nanoparticles are synthesized under supercritical water conditions (T > 647 K and P > 22.1 MPa) using a home-made continuous process. At room temperature, metallic salts with or without aqueous hydroxide solution (KOH or NaOH) are pressurized to 25–30 MPa. Then, the reactant(s) is/are rapidly heated to 673–773 K by mixing with the supercritical water in a patented reactor. Residence time is in the range from 2 to 8 s. XRD, TEM and surface area analyses highlight the production of pure and well-crystallized nanoparticles with a uniform size distribution.
Acoustic vibrations of monoclinic zirconia nanocrystals
International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…
Continuous hydrothermal synthesis in supercritical conditions as a novel process for the elaboration of Y-doped BaZrO3
Abstract The present work describes a novel process for the elaboration of a ceramic material. Y-doped barium zirconate, an electrolyte material for Protonic Ceramic Fuel cell, was synthesized by a continuous hydrothermal process in supercritical conditions (410 °C/30.0 MPa) using nitrate precursors and NaOH reactants. The use of supercritical water allowed the formation of particles of about 50 nm in diameter with a narrow size distribution. X-Ray Diffraction examination revealed that a major perovskite phase with few BaCO3 and YO(OH) impurities was obtained. BaCO3 is assumed to form due to faster kinetics than Y-doped BaZrO3 resulting in a Ba-deficient perovskite phase. The Ba-deficiency …
Functionalized Fe3O4 nanoparticles: influence of ligand addition sequence and pH during their continuous hydrothermal synthesis
In this study we report various new efficient ways to synthesize and modify in situ magnetite (Fe3O4) iron oxide nanoparticles (NPs). Thanks to an apparatus especially developed for this new method of grafting, the NPs have been synthesized and functionalized by 3,4-dihydroxyhydrocinnamic acid (DHCA) or 3,4-dihydroxy-L-phenylalanine (LDOPA) in one step and under hydrothermal conditions using varying concentration ratios ([organic molecules]/[ferrous and ferric ions]). The organic molecules were added before or after the NP synthesis. The addition of these organic molecules modifies the structure, the morphology, the oxidation degree and the growth of the crystallites. Adding the organic mol…
One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite
International audience; Stable suspensions of citrated SPIO nanoparticles were synthesised in one step using a hydrothermal continuous process. Citrates control the crystallite size and the oxidation degree of metallic ions despite the very short reaction time (4 s). Magnetite particles, Fe2.94O4, with an average size of 4 nm and good monodispersity were obtained.
Hydrothermal Synthesis of ZnO Crystals from Zn(OH)2 Metastable Phases at Room to Supercritical Conditions
The originality of this work is to highlight the effect of temperature and pressure on the size and morphology of hydrothermal ZnO particles from ambient to supercritical conditions (T > 374 °C and P > 221 bar) using a unique continuous one-step process. Experiments were carried out from zinc nitrate (Zn(NO3)2) and potassium hydroxide (KOH) solutions in the ranges of 1–300 bar and 30–400 °C. The as-prepared particles of ZnO (flower, ellipsoid, and sphere) and e-Zn(OH)2 (polyhedral) sized from nano to micrometers were characterized by X-ray diffraction and electronic microscopy. The wulfingite phase (e-Zn(OH)2) was detected inside some powders especially at room temperature for higher pressu…
Tin-based mesoporous silica for the conversion of CO2 into dimethyl carbonate.
Sn-based SBA-15 was prepared by reacting di-n-butyldimethoxystannane with SBA-15 pretreated with trimethylchlorosilane (TMCS) to cap the external hydroxyl groups. Small-angle X-ray diffraction (SXRD), infrared spectroscopy (IR), nitrogen adsorption/desorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission (ICP-AES) measurements allow us to propose that the organotin species are located within the pore channels of the mesoporous host. This novel material catalyzes selectively the coupling of CO(2) with methanol to dimethyl carbonate (DMC). The reaction time-conversion dependence shows that a turnover number (TON) of 1…