0000000000120719
AUTHOR
Hongjian Wu
Process Modeling and Planning for Robotic Cold Spray Based Additive Manufacturing
Cold spray (CS) is a solid-state coating deposition technology that has recently been applied as an additive manufacturing (AM) process to fabricate individual components. This potential AM process is attracting more and more attention because of its advantages: high-forming efficiency, low temperature, and no phase changing of materials. These advantages make CS able to form large-volume objects to become an efficient and effective AM process. Nowadays, new advances in cold spray additive manufacturing (CSAM) call for new process implementation to improve the manufacturing accuracy and flexibility. Therefore, the purpose of this study is to enhance CS-based AM through the modeling and plan…
Stable layer-building strategy to enhance cold-spray-based additive manufacturing
Abstract Cold spray (CS) has recently become one of the popular additive manufacturing (AM) processes for its advantages: high-forming efficiency, low temperature, and no phase changing of materials. These advantages may make CS able to form large volume objects and possibly directly iterate with material-removing processes to become a hybrid AM process. Current research proposes using a bulk-based volume-forming strategy (e.g. a tessellation-based method) for volume building. Although it can form 3D volumes, the control of the process is difficult and it has limitations in forming complex 3D near-net-shapes with acceptable accuracy. This also conflicts with the basic principle of AM, where…
Bonding behavior of Bi-metal-deposits produced by hybrid cold spray additive manufacturing
Abstract Cold spraying (CS) is one of the most recently used additive manufacturing (AM) processes that allow forming large 3D objects efficiently without severe thermal effects. However, due to some limitations of the CSAM process, it is difficult to achieve the desired geometry with high precision. As a potential solution to this issue, CSAM process coupled machining, that is, hybrid addition and subtraction manufacturing, is proposed to achieve desired accuracy and reliable shape. Therefore, it is necessary to assess the mechanical reliability of multilayer deposits deposited by CSAM + machining processes before that. In this work, different bi-deposits were obtained via hybrid CSAM. The…
A new approach to simulate coating thickness in cold spray
Abstract In the process of cold spray on complex components, the coating thickness is an important indicator to monitor and control. Current methods such as destructive tests or direct mechanical measurements can only be performed after spraying. Besides, these methods lead to production shutdown and additional costs . This article presents a novel approach predicting coating thickness for components with complex curved surfaces, especially in the case of shadow effects. Firstly, a three-dimensional geometric model of the coating profile based on Gaussian distribution was developed. In addition, the relative deposition efficiency (RDE) resulting from the different robot kinematic parameters…
Influence of spray trajectories on characteristics of cold-sprayed copper deposits
Abstract Industrial robots are widely used in cold spray (CS) as well as thermal spray to produce various coatings by precisely controlling kinematic parameters during the process. However, the robot trajectory and its effect on the characteristics of CS deposits are important, but not fully studied. This article introduces four typical spray trajectories, including zigzag path, cross path, parallel path, and spiral path, to elaborate thick CS Cu deposits, and characterizes the corresponding Cu deposits, respectively. The experimental results revealed that the spray trajectories have a major influence on the associated thermal history and the residual stress distribution. However, no signif…
Prediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artificial neural network
Abstract Thermal spray comprises a group of coating processes for coating manufacturing in which metallic or nonmetallic materials are deposited in a molten or semi-molten condition. Most often, the coating properties are significantly influenced by the operating parameters. However, obtaining a comprehensive modeling or analytical analysis of the thermal spray process is too difficult to be practical due to the complex chemical and thermodynamic reactions. Accordingly, the present study aims at applying an artificial neural network (ANN) model to predict the HVOF sprayed Cr3C2−25NiCr coatings and analyze the influence of operating parameters regardless of the intermediate process. The proce…